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FINITE ELEMENTS FOR VIBRATION ANALYSIS OF 
UNSYMMIETRIC LAMINATED COMPOSITE PLATES 

B. Bhattacharya, A. K Krishna Mum, and M. Seethararna Bhat 
Department of Aerospace Engineering, Indian Institute of Science, 
Bangalore, India 

A 38-DOF (degrees-ofifkedom), high precision hianguhvelemel isdeveloped for vibmtian 
analysis of hminated composite panek with explicitly defined stimess and mass matrices. 
A new, reduced'+rder, 18-DOC high-preckwn element is formulated through condenscrrion 
of the 38-DOE' element; the o&r reduction is done at the element level instead of the 
conventional condensation at the postassembly global mahir leveL Notlrrnl jkquencies 
and mode shapes obrained using these two elements are compared with those available in 
the litemture. .Resuh indicate excellent performance of the condensed element I n  view 
of the relativeijr lower DOC the reduced element is believed be a&wtive for evahahg 
dynamic response and vibmcion control analysis of unsymmririe laminates. 

Structural designers prefer composite materials because of higher strength-weight 
ratios and more flexibility in tailoring required structural properties. The use of such 
materials to build 1ightwei.ght structures, particularly for aerospace applications, often 
requires computationally economic algorithms to model their dynamic behavior. 

The study of vibration of laminated composite plates and shells has received attention 
for over three decades. The reviews of Leissa [l], Reddy [2], and Kapania [3] cover the 
advances in this field exten:sively. The difficulties in obtaining closed-form solutions have 
led to the development of numerous approximate methods, of which the finite-element 
technique has been found to be the most powerful tool for the analysis of structures having 
complex shape and boundary constraints. Performance of high-precision finite elements 
is known to be generally better than that of elements based on conventional translational 
and rotational degrees of fmedom, as the high-precision finite elements use higher-degree 
polynomial displacement filnctions, resulting in more accurate dynamic response. Shiau 
and Wu 141, for exgnpIe. hiwe developed a 72-degrees-of-freedom (DOF) triangular plate 
element considering the displacements and their higher-order derivatives as DOE With 
such an element, it is possittle to obtain precise solutions for natural frequencies and mode 
shapes, nearly as good as that of a three-dimensional elasticity model. However, in view 
of the large number of .noid degrees of freedom, such elements are not attractive for 
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6 B. BHATTACHARYA ET AL. 

vibration analysis, particularly when active control of the dynamic behavior is to be 
considered. As has been observed by Bhimraddy [5], composite plates may be analyzed 
fairly accurately using classical laminated plate theory (CLPT) over a wide range of 
thicknesses, and so high-precision elements based on CLPT, such as Cowper elements 
[6]. may be attractive for laminate vibration analysis. However, to achieve faster and 
economic solution, complete elimination of expensive numerical integrations from the 
formulation of the element matrices and condensation of the element degrees of freedom 
are very desirable. The present article considers both of these aspects. 

It is now well known that numerical integrations associated with element formulation 
may be eliminated using the SAN (symbolic-analytical-numerical) approach. One of the 
earliest references to this technique may be found in Pederson [7]. Using a symbolic 
manipulation language called PLA-FORMAC, he obtained closed-form expressions for 
matrix multiplications, inversions, and numerical integrations needed to generate a linear- 
strain tetrahedron finite element. Subsequently, another software called REDUCE was 
used [8, 91 to compute closed-form stiffness matrices, and a shape optimization was 
carried out using mathematical programming. Using MATHEMATICA, Choi and Nomura 
[lo] reported an extensive study of such technique for analyzing a rectangular body 
subjected to linear temperature distribution. These symbolic approaches have several 
advantages, such as automatic generation of the required polynomials, closed-form expres- 
sions for element matrices, and reduction of solution times. 

Dynamic condensation procedures reduce the element DOF and the size of the 
eigenvalue problem, thereby reducing the computational effort. For many engineering 
problems, only the first few natural frequencies are of interest from the structural designer's 
point of view, as the probability of excitation of higher-order modes is very low. The 
DOF, having minor contribution to the total energy of the system at lower modes, can 
therefore be condensed [I 11. Pas [12], perhaps the earliest, has proposed an iterative 
procedure in which the less important DOF are condensed, one by one, from the assembled 
matrix. A criterion for choosing the ignorable degrees of freedom using the ratios of the 
corresponding diagonal terms of the stiffness and mass matrices has been given by Hensell 
and Ong [13]. Thomas [I41 has modified this criterion using an error norm in frequency 
estimation, considering the higher-order effects of the DOF to be condensed on the retained 
DOE Unfortunately, this requires the solution of a nonlinear eigenvalue problem, which 
is difficult. particularly for a large assembled matrix. 

In quest of an economic finite element for unsymmetric laminates, the present article 
has integrated the two aforementioned concepts. The numerical integration is replaced by 
closed-form analytic expressions. A 38-DOF triangular element, developed earlier by 
Jeychandra Bose and Kirkhope (15, 161 for static analysis, is adopted here to study the 
vibration of unsymmetric composite plates. MATHEMATICA is used to derive the ele- 
ments of mass and stiffness matrices in closed form for the first time. A two-stage static 
and dynamic condensation of these matrices is canied out at the element level itself to 
generate a new, 18-DOF triangular element. Both 38- and 18-DOF elements are used to 
obtain results for unsymmetric rectangular and skewed composite plates and also plates 
having cutouts. Comparison of the results with some of those available in the literature 
brings out the performance of these elements. 

THE FINITE-ELEMENT FORMULATION 
In [6] ,  Cowper developed a triangular thin-plate element, with the transverse deflec- 

tions and their first- and second-order derivatives as DOF, and the displacement function 
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VIBRATION ANALYSIS OF UNSYMMETRIC COMPOSITES 7 

in the form of a constrained quintic polynomial. In this element, the interelement continuity 
of normal slope is satisfied, which is a cubic function of the edgewise coordinate. This 
element has excellent convergence properties and is usually referred as a high-precision 
element (HPE). In the present element, in addition to the transverse DOF, the in-plane 
displacements and their first-order derivatives are also included as DOE The in-plane 
DOF are added in order co make the element applicable to unsymmetric composite 
laminates. Two cenvoidal in-plane DOF (u, and v,) are also considered to facilitate the 
use of a complete cubic pol:ynomial for in-plane displacements. This element has 38 DOF 
and will be referred to henceforth as HPE-38. The element configuration is shown in 
Figure 1. 

In each element, three field displacements, u, v (in-plane components), and w 
(transverse component) alorlg the x, y, and z directions are considered. Nodal DOF chosen 
are grouped into three vectors as 

where 

Figure 1. Element configuration. 
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8 B. BHATTACHARYA ET AL. 

u,., w,., etc., are the first-order derivatives with respect to x at node i (i = 1, 2, 3). 
Similarly, wUi, etc., are the second-order derivatives; u, v, denote the displacements along 
x and y directions at the centroid of the element. The in-plane displacement functions are 
assumed to be complete cubic polynomials: 

where 

and 

[CIt = (Cl, . . CloI 

For the transverse displacement function, 

w(St q) = {A2IT {CI 

where 

It may be noted that in (A?), the c4q term is dropped in order to provide the cubic 
variation of the normal slope along the edge 7) = 0. Using Eqs. (lj(6), the displacement 
field can be expressed in terms of nodal displacements as 

where 

and 

where Ti' can be obtained directly by using Eqs. (2) and (5); T?' is to be evaluated 
using Eqs. (4) and (6) and the constraint conditions to achieve the continuity of the 
normal slope across the element boundaries [6] .  Using MATHEMATICA, [N] and [N] 
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VIBRATION ANALYSIS OF UNSYMMETRIC COMPOSITES 9 

are evaluated explicitly. Cbsed-form expressions of these two matrices are already reported 
in [15].and [16]. 

Stiffness Matrix 

Following Kirchhoff-Love's assumptions, the expressions for strains are given by 

Assuming each lamina to be orthotopic, the constitutive relations can be written as 

where 

and the reduced stiffness matrix 0 can be computed from the material properties, fiber 
orientation angles, etc. [la]. The expression for strain energy, %, may be written as 

where 

n = total number of layerr; and hk = distance of the kth layer of lamina from the origin, 
and [B] is the coupling maxrix, which is zero for symmetric laminates and is nonzero for 
unsymmetric laminates. 

The strain and curvature vectors can be expressed in terms of area coordinates, and 
Eq. (9) can be rearranged as 
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10 9. BHATTACHARYA ET AL. 

with 

and 

where 

Using Eqs. (1x6); a and B can be expressed in terms of nodal DOF and the 
element stiffness matrix can be identified from the strain energy expression in the form 

where [K] is the stiffness matrix, which is a function of N, N, A, B, and D. In the present 
study, elements of [K] are obtained in explicit form using MATHEMATICA and are given 
in the authors' report [19]. The elimination of numerical integration alleviates the problem 
of choosing proper order of integration and improves the computation time. 
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VIBRATIOPJ ANALYSIS OF UNSYMMETRIC COMPOSilW 11 

Mass Matrix 

The mass matrix may be identified from the expression for kinetic energy 9: 

where Atk = thickness of the kth layer, pk = density per unit area of the kth layer, and 

On transformation to area coordinates. Eq. (13) becomes 

Assuming the thickness and density to be uniform within each element, and noting that 
the expression for N, contains Al and A2 only, the following two integrals are necessary 
to evaluate M in closed form: 
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12 8. BHATTACHARYA ET AL. 

Recognizing that A ,  is a subset of A2, AT is partitioned for convenience as [ATIK~, 
resulting in 

thereby, P2 may be written as 

and PMlZ = PMTI. Matrices P I ,  PMI2. and PM22 are evaluated by MATHEMATICA. 
After obtaining the matrices PM, and P2 the mass matrix elements are formed using Eqs. 
(7) and (13). Elements of the mass matrix M, in closed form, are somewhat lengthy and 
are given in [19]. 

DYNAMIC ANALYSIS 

The dynamic equations of equilibrium are formulated in the standard way as 

where Mg and K, are global matrices assembled from element matrices. Assuming a 
general solution of the form 6 = 6,ei,, the eigenvalue problem is constructed as 

where h = oZ. 
The HPE-38 has 12 degrees of freedom per node; as a result, the size of the 

eigenvalue problem is usually much larger than the number of frequencies required. A 
good amount of computational time can be saved if a solution scheme is adopted that is 
capable of finding only the required number of eigenvalues instead of solving for all 
eigenvalues. The subspace iteration method, used in this article, is one of the best techniques 
for this purpose. Starting with a subspace of assumed vectors with dimension equal to 
the number of required eigenvalues. an iterative procedure is adopted to obtain the desired 
frequencies and mode shapes. This solution technique requires approximately nm2 + 
nm(4 + 4r) + 5nr + 20nq(2m + q + 312) numbers of operations, where n denotes the 
size of the matrix involved, m is the half-bandwidth, r is the number of eigenvalues 
required, and q = min(2r, r + 8) [20]. For eigenvalue problems having total DOF more 
than 1000, solution is difficult even with such routines, and it is expedient to explore 
possibilities for reduction of DOE 

Condensation of some of the DOF is a widely accepted way of reducing size of an 
eigenvalue problem. Usually the method is adopted after assembling the element matrices 
into global Ma and Kg. Here, an alternative semianalytic condensation scheme is proposed 
that can be applied directly at the element level. It is found that the two centroidal DOF 
u, and v, of each element are isolated from the other elements, unlike the DOF at the 
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VIBRATICIN ANALYSIS OF UNSYMMETRIC COMPOSITES 13 

vertices. Hence, in the first-stage these two in-plane DOF of each element are condensed 
statically for convenience. Thus, the original eigenvalue problem Kx = AMx is modified as 

where S I  are the set of DOF to be retained and 62 are the DOF to be condensed. Then 
the modified stiffness ant! mass matrices of the reduced eigenvalue problem can be 
written as 

In the second stage of condensation, the inertia forces corresponding to the slave DOF 
(DOF to be condensed) an: not negligible in comparison to the master DOF (DOF to be 
retained). Hence, assuming that the slave DOF are negligible excited. dynamic condensa- 
tion of stiffness and mass matrices are carried out. In this article, the dynamic condensation 
technique is applied at the element level. The successful use of such a technique for 
condensing DOF in a simply supported Timoshenko beam is reported in the literature 
[14]. To eliminate the slavt: DOF at the element level, a suitable relationship of the slave 
DOF with the masters is essential. Here we create such a relationship by assuming dynamic 
equilibrium at each element. It must be remembered that this is only approximate and 
approaches the true situation only when the boundaries are not constrained. The steps of 
dynamic condensation are as follows. 

The slave DOF are idtmtified comparing the constrained eigenfrequency ratio expres- 
sions of all the 36 DOF revained after the first stage of condensation. Accordingly, only 
18 DOF (wi. w, ,., w. ,i, w, w, x,~, W, ).)'i, i = 1, . . . , 3) are selected as master DOF, and 
a new element RHPE- 18 is formed. It may be noted that the truncation from 36 DOF to 
18 DOF results in a Cowper element, whereas the condensation brings out a new element 
with modified stiffness and mass matrices. 

As (K - AM)S = 0 for each element, partitioning the vector S into master and 
slave DOF based on the previous step results in 

Assuming that at the lower frequencies of interest there will be no excitation of the slave 
DOF, they can be eliminated using 

However, a computationally feasible way is found out to eliminate 6, and obtain a modified 
eigenvalue problem. 
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14 B. BHA'ITACHARYA ET AL. 

For this purpose, consider the auxiliary eigenvalue problem pertaining to 6, con- 
straining the motion of masters (&, = 0), which is, in this case, the 18 DOF consisting 
of all in-plane DOF: 

or. after modal transformation. 

where A ,  is a diagonal matrix with eigenvalues A.Ii and 4 is a square matrix with 
eigenvectors 6,,. If W is a normalizing vector required for mass orthonormalization, then 

Substituting Eq. (22) into Eq. (20), 6, can be re-formed as 

When A < A,<,i,, (which provides a criterion for selection of master DOF), by denoting 
AA,;' = y (y is a diagonal matrix having yii < 1, y2 = yy, y3 = yyy, etc.), one gets 

Hence. 

Defining H = -A;'QTKs, and T = H + we get a new expression for 6,: 

Substituting Eq. (23) into Eq. (19) yields 

Consideration of only the first order of y is generally inadequate. as it introduces significant 
computational error 1141. Hence, the second-order effect of y is considered here. Noting 
that @A,;'mT = K,;', the eigenvalue problem can be further simplified to 
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VlBRATlON ANALYSIS OF UNSYMMETRIC COMPOSITES 
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Figure2. Convergence in frequency estimation by RHPE- 18comsponding to first and second modal frequencies. 

. . . .:. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

- .  - Second Modal Frequency - ........ l .  . .: . . . . . . .  : . . . . . .  . . . . . . .  

6 - . . . .  . . . i .  . . .  . . . ! . . . . . .  . . . . . . . . . . . . . . .  .:...... ................................. :......... . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 - .  .. : . . 

It ." - - * - ... w - - I 

where 

and 

Thus, in this step the following computations are to be made: 

1. Numerical computation of A, and W solving an 18 X 18 eigenvalue problem 
for each element 

2. Computation of ]ti, T, and 8M based on A.s and W 
3. Computation of IYR and MR for each element semianalytically, thus constituting 

a new 18-DOF element from the old element 
4. Finally, solution of an eigenvalue problem using the Winrick and Williams 

algorithm [23] 
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B. BHAITACHARYA ET A L  

+SF Figure 3. A typical swept plate. 

Computer programs are written in FORTRAN in which closed-form expressions are 
directly used wherever possible with the help of MATHEMATICA. 

RESULTS AND DISCUSSION 

HPE-38 is a well-established element for static analysis. In dynamic analysis, too, 
it is known to converge well. The reduced-order RHPE- 18, however, is a new derivative 
of the high-precision element. Figure 2 shows the convergence trend of RHPE-18 corres- 
ponding to the first and second modal frequencies of a cantilever plate. The results indicate 
that the frequency by RHPE-I8 converges well with mesh refinement. 

In the following discussion the performance of HPE-38 and RHPE-I8 will be 
compared with the other results. First, a symmetric layup is considered in order to bring 
out the performance of the present elements in comparison with the results available in 
the literature. Typical problems of free vibration of unsymmetric laminates having different 
boundary conditions, and weak or strong orthotropic properties, are chosen subsequently 
for performance evaluation of HPE-38. Finally, the elements themselves are compared 
with respect to their performance in estimating the modal frequencies. 

Cantilever Swept Composite Plate 

The geometry of the plate is shown in Figure 3 and the finite-element mesh in 
Figure 4. The material properties of the composite laminate are considered the same as 
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VIBRATION ANALYSIS OF UNSYMMETRIC COMPOSITES 17 

Table 1. Comparison of nondimensional frequency parameter = ( w o 2 1 h ) f i  (fl = 30°, a = 14". 
b = 6". c = 37 taper ratio = 0.5. S = 100) 

Laminate Mode 
~ V U P  no. Leew Leeh HPE-38 RHPE- I 8 

' Four-noded element. 
Eight-noded element. 

in [21]. The length-to-thickness ratio S for the plate is 100. A symmetric ply sequence 
[e2/0], is chosen for numelical study. The number of active DOF considered is 185 for 
the HPE-38 element and 95 for the RHPE-18. The frequencies obtained from the (4 X 
4) mesh agree well with Lee's results using four- and eight-noded rectangular elements 
(Table 1). Mode shapes are presented in Figure 5. Results of Lee [21] and the present 
elements are so close that they are shown by the same nodal line in these figures. 

Anisotropic Square Plate 
Next, the vibration of unsymmetric cross- and angle-ply laminates with fixed-fixed 

boundary condition has been considered. In view of the asymmetry, the B matrix is nonzero 
here. As the in-plane vibration is coupled with transverse motion, this example is useful 
to evaluate the effect of condensing in-plane DOE Results corresponding to S = 50 and 
100 with the material prop1:rties EIIE2 = 40, GI2/E2 = 0.6, and v12 = 0.25 are compared 
with those of Reddy [24] and Shiau [4] (Table 2). Excellent performance of RHPE-18 
may be noted. In view of the large reduction in DOF, without loss of much accuracy 
(0.01% relative error with RHPE-18), reduced elements may be considered attractive for 
dynamic analysis. Results for five sets of boundary conditions, C-C-C-C, C-C-F-F, 
C-F-C-F, C-C-S-S, and C-S-C-S, given in Table 3, shows that the reduced element 
predicts frequencies fairly accurately for all the cases. 

Composite Plate with Rectangular Cutout 
The accuracy of frequency estimation by the high-precision elements in the presence 

of a cutout is studied next. The free-vibration problem of a simply supported graphite- 
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9. BHA'ITACHARYA ET AL. 

1st hlutlc 2nd hlotlc -. 3- 

Flare 5. Mode shapes of swept composite plate; ply layup [02/0]; swept angle p = 30". 

epoxy square plate with a rectangular cutout at its center is considered. The orthotropic 
material propenies are EJE, = 40, GJEy = 0.5, and v, = 0.25. The plate geometry and 
the finite-element subdivision are shown in Figures 6 and 7, respectively. Variation of the 
nondimensional frequency parameter fl with dla for different sizes of cutouts is shown 
in Figures 8 and 9. For orthotropic plates, the results obtained by Lee et al. [22] through 
Ritz analysis are also plotted for comparison in Figure 7. In Figure 9 the performance of 
RHPE-18 is compared with HPE-38 for unsymmetric (0190) laminates. The performance 

Table 2. Fundamental frequencies (in Hz) of different square laminates 

Laminate S Ref. [24] HPE-38 RHPE- 1 8 
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VIBRATION ANALYSIS OF UNSYMMETRIC COMPOSITES 19 

Table 3. Modal frequency estimation by HPE-38 and RHPE-18 corresponding to different b w n d q  
conditions 

Mode I (mi ls )  Mode I1 (radls) Mode 111 (radls) 
Boundary 
condition HPE-38 RHPE-I8 HPE-38 RHPE-I8 HPE-38 RHPE- I8 

C-C-C-C 18.20 18.24 29.08 29.18 55.34 55.02 
C-C-F-F 10.95 10.97 27.37 27.4 1 46.27 46.42 
C-F-C-F 10.22 10.28 26.16 26.26 45.33 45.50 
C-C-S-S 13.52 13.6 1 26.14 26.2 1 48.18 48.33 
CS-C-S 14.85 1498 24.34 24.39 47.18 47.40 

of RHPE-18 is excellent for all combinations of dla and dlc. The frequency parameters 
obtained using RHPE- 18 for unsymmetric laminates for the first five modes are compared 
with results obtained using HPE-38 in Table 4 for various sizes of cutouts. Table 5 provides 
the corresponding modal vi:ctor data for the first two modes. The difference in nodal 
deflections, corresponding to the mode shapes, obtained using HPE-38 and RHPE- I8 are 
very small. 

Performance Comparison of HPE-38 and RHPE-18 
Finally, the performance of HPE-38 and its derivative RHPE-18 are compared for 

a cantilever triangular plate. Fundamental frequency estimated by HPE-38 with a coarser 

Figure 7. vpical  finite element mesh for quarter-plate o f  rectnn- 

Figure 6. Simply supported rectangular plate 
with cutout 

gular cutout L 
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Flyre 8. Fundamental frequency parameters for orthotropic square plate with a rectangular cutout. 

11 

100 

3 0 "  

Figure 9. Frequency parameters for unsymmewic laminate with cutout. 
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Table 4. Nondimensional frequer~cy parameter (St = ( w 2 1 h ) f i )  of a simply supported unsymmetric 
squm laminate with a cutout" 

Mode I Modes 11 and 111 Mode IV Mode V 

HPE- RHPE- HPE- RHPE- HPE- RHPE- HPE RHPE- 
dla 38 18 38 18 38 I8 38 I8 

"Ply sequence [245, 0, 90, 2451; layer thickness r, = 0.016 in.; plate slenderness ntio d l r  = 104. 

Table 5. Modal deflections [245. 0, 90, 2451 laminate with square cutout 

dla Mod@ 

0.1 SX-SY 
SX-AY 

0.2 SX-SY 
SX-AY 

0.3 SX-SY 
SX-AY 

0.4 SX-SY 
SX-AY 

0.5 SX-SY 
SX-AY 

Deflection at nodes (as shown in Figure 4) 

' SX, symmetric about the X axis; SY, symmetric about the Y axis; AX, antisymmetric about the X axis; AY, 
antisymmetric about the Y axis. 

mesh is compared to that of RHPE-18, having approximately the same active DOE Results 
are included in Table 6. It may be noted that the performance of the original element 
(HPE-38) in estimating natural frequencies is slightly better than that of the condensed 
element corresponding to the same (or nearly same) DOE However, the difference is 
small, such that the reduced element may be considered more expedient for general 
dynamic analysis. 

CONCLUSION 

A reduced, high-precision, triangular element has been developed for the vibration 
analysis of unsymmetric laminates. A new dynamic condensation procedure is adopted 
to condense a high-precision 38-DOF element that includes bending-extension coupling. 
A semianalytical-numerical approach has been used to obtain the element stiffness and 
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Teble 6. Comparison of modal frequencies (radls) estimated by HPE-38 and RHPE-I8 for a cantilever 
triangular plate corresponding to similar active DOF 

Mode DOF = 60 DOF = 52 DOF = 104 W F  = 90 Converged 
no. HPE-38 RHPE- I8 HPE-38 RHPE- I 8 value 

mass matrices in closed form. The reduced high-precision element has only 18 DOF, 
compared to the 38-DOF original element. Through typical numerical experiments it has 
been shown that RHPE-18 gives results very close to those with the original element. In 
view of the elimination of the numerical integration in the element formulation and the 
reduction of DOF, it is expected that this element will be attractive for the dynamic 
analysis of unsymmetnc laminates. 
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