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FINITE ELEMENTS FOR VIBRATION ANALYSIS OF
UNSYMNIETRIC LAMINATED COMPOSITE PLATES

B. Bhattacharya, A. V. Krishna Murty, and M. Seetharama Bhat
Department of Aerospace Engineering, Indian Institute of Science,
Bangalore, India

A 38-DOF (degrees-of-freedom), high precision triangular element is developed for vibration
analysis of laminated composite panels with explicitly defined stiffness and mass matrices.
A new, reduced-order, 18-DOF, high-precision element is formulated through condensation
of the 38-DOF element; the order reduction is done at the element level instead of the
conventional condensation at the postassembly global matrix level Natural frequencies
and mode shapes obtained using these two elements are compared with those available in
the literature. Results indicate excellent performance of the condensed element. In view
of the relatively lower DOF, the reduced element is believed to be attractive for evaluating
dyramic response and vibration control analysis of unsymmetric laminates.

Structural designers prefer composite materials because of higher strength—weight
ratios and more flexibility in tailoring required structural properties. The use of such
materials to build lightweight structures, particularly for aerospace applications, often
requires computationally economic algorithms to model their dynamic behavior.

The study of vibration of laminated composite plates and shells has received attention
for over three decades. The reviews of Leissa [1], Reddy [2], and Kapania [3] cover the
advances in this field extensively. The difficulties in obtaining closed-form solutions have
led to the development of numerous approximate methods, of which the finite-element
technique has been found to be the most powerful tool for the analysis of structures having
complex shape and boundary constraints. Performance of high-precision finite elements
is known to be generally better than that of elements based on conventional translational
and rotational degrees of frzedom, as the high-precision finite elements use higher-degree
polynomial displacement functions, resulting in more accurate dynamic response. Shiau
and Wu [4], for example, hiave developed a 72-degrees-of-freedom (DOF) triangular plate
element considering the displacements and their higher-order derivatives as DOF. With
such an element, it is possible to obtain precise solutions for natural frequencies and mode
shapes, nearly as good as that of a three-dimensional elasticity model. However, in view
of the large number of -nodal degrees of freedom, such elements are not attractive for
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vibration analysis, particularly when active control of the dynamic behavior is to be
considered. As has been observed by Bhimraddy [5], composite plates may be analyzed
fairly accurately using classical laminated plate theory (CLPT) over a wide range of
thicknesses, and so high-precision elements based on CLPT, such as Cowper elements
[6], may be attractive for laminate vibration analysis. However, to achieve faster and
economic solution, complete elimination of expensive numerical integrations from the
formulation of the element matrices and condensation of the element degrees of freedom
are very desirable. The present article considers both of these aspects.

It is now well known that numerical integrations associated with element formulation
may be eliminated using the SAN (symbolic-analytical-numerical) approach. One of the
earliest references to this technique may be found in Pederson [7]. Using a symbolic
manipulation language called PL/I-FORMAC, he obtained closed-form expressions for
matrix multiplications, inversions, and numerical integrations needed to generate a linear-
strain tetrahedron finite element. Subsequently, another software called REDUCE was
used [8, 9] to compute closed-form stiffness matrices, and a shape optimization was
carried out using mathematical programming. Using MATHEMATICA, Choi and Nomura
[10] reported an extensive study of such technique for analyzing a rectangular body
subjected to linear temperature distribution. These symbolic approaches have several
advantages, such as automatic generation of the required polynomials, closed-form expres-
sions for element matrices, and reduction of solution times.

Dynamic condensation procedures reduce the element DOF and the size of the
eigenvalue problem, thereby reducing the computational effort. For many engineering
problems, only the first few natural frequencies are of interest from the structural designer’s
point of view, as the probability of excitation of higher-order modes is very low. The
DOF, having minor contribution to the total energy of the system at lower modes, can
therefore be condensed [11]. Pas [12], perhaps the earliest, has proposed an iterative
procedure in which the less important DOF are condensed, one by one, from the assembled
matrix. A criterion for choosing the ignorable degrees of freedom using the ratios of the
corresponding diagonal terms of the stiffness and mass matrices has been given by Hensell
and Ong [13]. Thomas {14] has medified this criterion using an error norm in frequency
estimation, considering the higher-order effects of the DOF to be condensed on the retained
DOF. Unfortunately, this requires the solution of a nonlinear eigenvalue problem, which
is difficult, particularly for a large assembled matrix.

In quest of an economic finite element for unsymmetric laminates, the present article
has integrated the two aforementioned concepts. The numerical integration is replaced by
closed-form analytic expressions. A 38-DOF triangular element, developed earlier by
Jeychandra Bose and Kirkhope [15, 16] for static analysis, is adopted here to study the
vibration of unsymmetric composite plates. MATHEMATICA is used to derive the ele-
ments of mass and stiffness matrices in closed form for the first time. A two-stage static
and dynamic condensation of these matrices is carried out at the element level itself to
generate a new, 18-DOF triangular element. Both 38- and 18-DOF elements are used to
obtain results for unsymmetric rectangular and skewed composite plates and also plates
having cutouts. Comparison of the results with some of those available in the literature
brings out the performance of these elements.

THE FINITE-ELEMENT FORMULATION

In [6], Cowper developed a triangular thin-plate element, with the transverse deflec-
tions and their first- and second-order derivatives as DOF, and the displacement function
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in the form of a constrained quintic polynomial. In this element, the interelement continuity
of normal slope is satisfied, which is a cubic function of the edgewise coordinate. This
element has excellent convergence properties and is usually referred as a high-precision
element (HPE). In the present element, in addition to the transverse DOF, the in-plane
disptacements and their first-order derivatives are also included as DOF. The in-plane
DOF are added in order to make the element applicable to unsymmetric composite
laminates. Two centroidal in-plane DOF (u, and v,) are also considered to facilitate the
use of a complete cubic polynomial for in-plane displacements. This element has 38 DOF
and will be referred to henceforth as HPE-38. The element configuration is shown in
Figure 1.

In each element, three field displacements, «, v (in-plane compenents), and w
(transverse component) along the x, y, and z directions are considered. Nodal DOF chosen
are grouped into three vectors as

{8} = {{U}, {V}T, (W)7) ()
where
{U}T= {ulvuﬁh Uni, Uy, - . .5 Uy, u‘]m’“ (2)
(VT = {v, Vels Vals V25 -+« » V3o Vehioxt G)
{WIT = (w1, Wt Wai Weghs Wenls Wamts Wae -+« o W, Dt @

v p(x,y.t)
xuU

VAR z,.w, W (a)

Figure 1. Element configuration.
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ug, wy, etc., are the first-order derivatives with respect to x at node i (i = 1, 2, 3).
Similarly, w,y, etc., are the second-erder derivatives; u,, v, denote the displacements along

x and y directions at the centroid of the element. The in-plane displacement functions are
assumed to be complete cubic polynomials:

u€. m) = {A)7 {C} &)

where
(A ={L&m, ..., )
and
[C}T=(C) ..., Cyp}
For the transverse displacement function,
w(g, M) = {Aq)7 (C} (6)
where

{A2}r = {]1 g’ LI R Tl4' gs‘ gJ.nZ‘ Ez'rla* §’fl4, Tlsl
{E}T ={Cyp, ..., Cop

It may be noted that in {A,}, the £&n term is dropped in order to provide the cubic
variation of the normal slope along the edge n = 0. Using Egs. (1)~(6), the displacement
field can be expressed in terms of nodal displacements as

u(€, m) = [N] (U}
v, ) = [N] {V) M
w(E, m) = [N] {W}

where

IN] = {A}}7 [T\
and

[N] = {A,}7 [To)™

where T;! can be obtained directly by using Egs. (2) and (5); T;' is to be evaluated
using Eqgs. (4) and (6) and the constraint conditions to achieve the continuity of the
normal slope across the element boundaries [6]. Using MATHEMATICA, [N] and N1
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are evaluated explicitly. Closed-form expressions of these two matrices are already reported
in [15] and [16].

Stiffness Matrix
Following Kirchhotf-Love’s assumptions, the expressions for strains are given by

€ S Uy~ WL,
€=V, — W, ®)

Yoy Uyt Ve~ 27w,
or
{e} = {€} + z [x}
Assuming each lamina to be orthotopic, the constitutive relations can be written as
{o) = [Q] (e}
where

() = {0, 0, 0.}

lG}T = ‘E.r’ €, 'ny}

and the reduced stiffness matrix Q can be computed from the material properties, fiber
orientation angles, etc. [18]. The expression for strain energy, ¥, may be written as

au = %J' [(€°}7 [A] {€°) + {€”)7 [B] {X] + {X}7[B] {€°} + {x}" [D] {x)] dA
A

&)

where

n hl’+| _
(Ap By Dp) = 2 [ QO (,z,2) dz

k=1 hy

n = total number of layers and h, = distance of the kth layer of lamina from the origin,
and [B] is the coupling matrix, which is zero for symmetric laminates and is nonzero for
unsymmetric Jaminates.

The strain and curvature vectors can be expressed in terms of area coordinates, and
Eq. (9) can be rearranged as
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a = %L LE ()7 [A] {e) + {e)7 (B) {B] + (B} (B {a) + {17 (D] (B)] & dn
(10)

with

{o}T = [ug, uy, ve, vyl

(B)7 = —:w; W:n'T:"’Fm] "
and

(R = o BT [AI(P]

(B] = 5 [P [BIQI

(D) = =5 [QF DI(Q)
where

b, b, 0 O
P1=10 0 ¢ o
C) Ca b| bz

[ b} b3 2b\b,

Q=] < 3 2¢\c,
_2b|C[ 2b2C2 Z(b,cz + sz])

Using Egs. (1)—(6); & and B can be expressed in terms of nodal DOF and the
element stiffness matrix can be identified from the strain energy expression in the form

| U7 U
M==3 VIL[K]{V
2 |wr w

where [K] is the stiffness matrix, which is a function of N, N, A, B, and D. In the present
study, elements of [K] are obtained in explicit form using MATHEMATICA and are given
in the authors” report [19]. The elimination of numerical integration alleviates the problem
of choosing proper order of integration and improves the computation time.
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Mass Matrix

The mass matrix may be identified from the expression for kinetic energy 7
G = %J pla™ u + vTy + pwiw] dV
or

I p[UT N'NU + VIN'NV + WIN'NW] 4V (12)

N -

M= i Atypy J:[ [NT N,] dx dy (13)
=

where Ar, = thickness of the ith layer, p, = density per unit area of the kth layer, and

Z

I
oo Z
o 2Z2o

0
0
N

On transformation to area coordinates, Eq. (13) becomes

-£
M xbf f [NTN,] d¢ dn

o /0

b= kzl Anp2A

Assuming the thickness and density to be uniform within each element, and noting that
the expression for N; contains A and A; only, the following two integrals are necessary
to evaluate M in closed form:

1 1~

P, = J J [AAT] dE d (14)
0 70
1 1-§

P, = J f [A,A]] dE dn (15)

0



11: 57 21 July 2009

Downl oaded By: [Indest open Consortiun] At:

12 B. BHATTACHARYA ET AL.

Recognizing that A, is a subset of A,, AJ is partitioned for convenience as [ATIAT],
resulting in

Al AR
AAL = [_' AT AR

thereby P, may be written as

P, = P, PM,,
2 [pMy PMy,

and PM,; = PMJ,. Matrices P,, PM,,, and PM,, are evaluated by MATHEMATICA.
After obtaining the matrices PM, and P, the mass matrix elements are formed using Eqgs.
(7) and (13). Elements of the mass matrix M, in closed form, are somewhat lengthy and
are given in [19].

DYNAMIC ANALYSIS

The dynamic equations of equilibrium are formulated in the standard way as
[M,](8} + [K,1(8) =0 (16)

where M, and K; are global matrices assembled from element matrices. Assuming a
general solution of the form 8 = 3¢, the eigenvalue problem is constructed as

[K,l{8.) = A[M](8,])
where A = w?

The HPE-38 has 12 degrees of freedom per node; as a result, the size of the
cigenvalue problem is usually much larger than the number of frequencies required. A
good amount of computational time can be saved if a solution scheme is adopted that is
capable of finding only the required number of eigenvalues instead of solving for all
eigenvalues. The subspace iteration method, used in this article, is one of the best techniques
for this purpose. Starting with a subspace of assumed vectors with dimension equal to
the number of required eigenvalues, an iterative procedure is adopted to obtain the desired
frequencies and mode shapes. This solution technique requires approximately nm?> +
nm(4 + 4r) + Snr + 20ng(2m + g + 3/2) numbers of operations, where n denotes the
size of the matrix involved, m is the half-bandwidth, r is the number of eigenvalues
required, and ¢ = min(2r, r + 8) [20]. For eigenvalue problems having total DOF more
than 1000, solution is difficult even with such routines, and it is expedient to explore
possibilities for reduction of DOF.

Condensation of some of the DOF is a widely accepted way of reducing size of an
eigenvalue problem. Usually the method is adopted after assembling the element matrices
into global M, and K. Here, an alternative semjanalytic condensation scheme is proposed
that can be applied directly at the element level. It is found that the two centroidal DOF
u. and v, of each element are isolated from the other elements, unlike the DOF at the
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vertices. Hence, in the first-stage these two in-plane DOF of each element are condensed
statically for convenience. Thus, the original eigenvalue problem Kx = AMx is modified as

K8, = \M5, an

where &, are the set of DOF to be retained and 8, are the DOF to be condensed. Then
the modified stiffness and mass matrices of the reduced eigenvalue problem can be
written as

(18)

In the second stage of condensation, the inertia forces corresponding to the stave DOF
(DOF to be condensed) are not negligible in comparison to the master DOF (DOF to be
retained). Hence, assuming that the slave DOF are negligible excited, dynamic condensa-
tion of stiffness and mass matrices are carried out. In this article, the dynamic condensation
technique is applied at the element level. The successful use of such a technique for
condensing DOF in a simply supported Timoshenko beam is reported in the literature
[14]. To eliminate the slave DOF at the element level, a suitable relationship of the slave
DOF with the masters is essential. Here we create such a relationship by assuming dynamic
equilibrium at each element. It must be remembered that this is only approximate and
approaches the true situation only when the boundaries are not constrained. The steps of
dynamic condensation are as follows,

The slave DOF are identified comparing the constrained eigenfrequency ratio expres-
sions of all the 36 DOF retained after the first stage of condensation. Accordingly, only
18 DOF (Wi, W, i W, yis W, sxis W, ayis W, yin § = 1, ..., 3) are selected as master DOF, and
a new element RHPE-18 is formed. It may be noted that the truncation from 36 DOF to
I8 DOF results in a Cowper element, whereas the condensation brings cut a new element
with modified stiffness and mass matrices.

As (K — AM)3 = ¢ for each element, partitioning the vector & into master and
slave DOF based on the previous step results in

Kom K.m.\‘ M, M, Bm _
([K‘"" K'“:l - RI:MMI M.rs:D {8\'} B {0} (19)

Assuming that at the lower frequencies of interest there will be no excitation of the slave
DOF, they can be eliminated using

& = —(K, — )\Mss)_](Ksm - )\M.rm)am (20)

However, a computationally feasible way is found out to eliminate &, and obtain a modified
eigenvalue problem.
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For this purpose, consider the auxiliary eigenvalue problem pertaining to 8, con-
straining the motion of masters (8, = 0), which is, in this case, the 18 DOF consisting
of all in-plane DOF:

(K.\'.\' - RJM.\'.\')SJ' = 0
or, after modal transformation,

K = AMOD =0 2hH

where A, is a diagonal matrix with eigenvalues A, and & is a square matrix with
eigenvectors 8. If W is a normalizing vector required for mass orthonormalization, then

5, = ®BW
O™M, @ = 1 (22)
KD = A,

Substituting Eq. (22) into Eq. (20), 8; can be re-formed as
8, = —®A;I — A ) DK, — AM,,)5,

When X < A miny (Which provides a criterion for selection of master DOF), by denoting
AA! = vy (v is a diagonal matrix having v; < 1, ¥ = vy, ¥ = vyy. etc.), one gets

A-MH ==Y =T+y+y+ -
Hence,

8, = —@A:'(l + v+ ,YZ + "')‘DT(K.rm - )\Msm)am
= q)[_/\s_lq)r(K.tm - MM — A.c_LY(DT(me — YM,,.} <18,

Defining H = ~A;'®K,,, and T = H + ®"M,,,, we get a new expressicn for §;:
8, =®H + I + v+ v + T8, (23)
Substituting Eq. (23) into Eq. (19) yields

[Kpw + K, ®H —~ yA(M,,,, + M, ®H) + K, DyT
- ‘YA‘M”"(D‘YT + Kmsd)'sz + 0(73)]5m =0
Consideration of only the first order of vy is generally inadequate, as it introduces significant

computational error [14]. Hence, the second-order effect of -y is considered here. Noting
that @A '®T = K, the eigenvalue problem can be further simplified to
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— First Modal Frequency
-—-- Second Modal Fraquency

T s

1 L] 1 1 | 1 i J

3 4 5 6 7 8 9 10 1 12
N (Nos. of elements per side)

Figure2. Convergence in frequency estimation by RHPE-18 corresponding to first and second modal frequencies.

where

and

(K¥ — A\M? — ASM)S,, = 0 (24)

KR = K,,,,,. - KnuKs—:!K.rm
M = Mmm + Km.sK.r_slMs.rK.;IKJm - Mnqu_sIK.\'m - Km.tK.\'_slMsm

SM = M, ®YT ~ K, DA 'y
T = T'yA]'T

Thus, in this step the following computations are to be made:

1.

Numerical computation of A, and W solving an 18 X 18 eigenvalue problem
for each element

Computation of H, T, and 3M based on A, and W

Computation of IX® and M® for each element semianalytically, thus constituting
a new 18-DOF element from the old element

Finally, solution of an eigenvalue problem using the Wittrick and Williams
algorithm [23]
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[ a ] . .
= " Figure 3. A typical swept plate.

Computer programs are written in FORTRAN in which closed-form expressions are
directly used wherever possible with the help of MATHEMATICA.

RESULTS AND DISCUSSION

HPE-38 is a well-established element for static analysis. In dynamic analysis, too,
it is known to converge well. The reduced-order RHPE-18, however, is a new derivative
of the high-precision element. Figure 2 shows the convergence trend of RHPE-18 corres-
ponding to the first and second modal frequencies of a cantilever plate. The results indicate
that the frequency by RHPE-18 converges well with mesh refinement.

In the following discussion the performance of HPE-38 and RHPE-18 will be
compared with the other results. First, a symmetric layup is considered in order to bring
out the performance of the present elements in comparison with the results available in
the literature. Typical problems of free vibration of unsymmetric laminates having different
boundary conditions, and weak or strong orthotropic properties, are chosen subsequently
for performance evaluation of HPE-38. Finally, the clements themselves are compared
with respect to their performance in estimating the modal frequencies.

Cantilever Swept Composite Plate

The geometry of the plate is shown in Figure 3 and the finite-element mesh in
Figure 4. The material properties of the composite laminate are considered the same as

Figure 4. Finite-element mesh for swept plate.
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Table 1. Comparison of nondimensional frequency parameter () = (wa*/h) /p/E, (B = 30° a = 14",
b = 6", c = 37, taper ratio = 0.5, § = 100)

Laminate Mode
layup no. Lee* Lee® HPE-38 RHPE-18
[0-/0], t 209 2.07 207 207
2 10.08 10.13 10.06 10.06
3 12.45 12.21 12.24 12.24
[ 15,/0], | 1.99 1.90 1.90 1.90
2 9.34 9.24 9.22 9.22
3 13.93 13.86 13.88 13.88
[30,/0], 1 1.64 1.57 1.57 1.57
2 8.41 8.25 8.27 8.27
3 14.51 14.72 14.75 14.76
[45,/0), | 1.30 1.30 1.30 1.30
2 1.34 7.20 7.24 7.24
3 14.00 14.43 14.36 14.36
{60,/0], 1 .16 1.16 1.16 1.16
2 6.59 6.44 6.46 6.46
3 12.52 13.07 12.98 12.99
[90,/0), | 1.07 1.01 1.01 1.01
2 5.90 576 5.81 5.81
3 10.28 10.56 10.58 10.61

< Four-noded element.
% Eight-noded element.

in [21]. The length-to-thickness ratio S for the plate is 100. A symmetric ply sequence
[6,0];, is chosen for numerical study. The number of active DOF considered is 185 for
the HPE-38 element and 95 for the RHPE-18. The frequencies obtained from the (4 X
4) mesh agree well with Lee’s results using four- and eight-neded rectangular elements
(Table 1). Mode shapes are presented in Figure 5. Results of Lee [21] and the present
elements are so close that they are shown by the same nodal line in these figures.

Anisotropic Square Plate

Next, the vibration of unsymmetric cross- and angle-ply laminates with fixed-fixed
boundary condition has been considered. In view of the asymmetry, the B matrix is nenzero
here. As the in-plane vibration is coupled with transverse motion, this example is useful
to evaluate the effect of condensing in-plane DOF. Results corresponding to § = 50 and
100 with the material properties E\/E; = 40, G\o/E; = 0.6, and v}, = 0.25 are compared
with those of Reddy [24] and Shiau [4] (Table 2). Excellent performance of RHPE-18
may be noted. In view of the large reduction in DOF, without toss of much accuracy
(0.01% relative error with RHPE-18), reduced elements may be considered attractive for
dynamic analysis. Results for five sets of boundary conditions, C-C-C-C, C-C-F-F,
C-F-C-F, C-C-§-S, and C-5-C-S, given in Table 3, shows that the reduced element
predicts frequencies fairly accurately for all the cases.

Composite Plate with Rectangular Cutout

The accuracy of frequency estimation by the high-precision elements in the presence
of a cutout is studied next. The free-vibration problem of a simply supported graphite-
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ist Mode 2nd Mode 3rd Mode

5 By

0y D By
Dy

Figure 5. Mode shapes of swept composite plate; ply layup [8./0]; swept angle B = 30°.

1@

epoxy square plate with a rectangular cutout at its center is considered. The orthotropic
material properties are E/E, = 40, G /JE, = 0.5, and v, = 0.25. The plate geometry and
the finite-element subdivision are shown in Figures 6 and 7, respectively. Variation of the
nondimensional frequency parameter ) with d/a for different sizes of cutouts is shown
in Figures 8 and 9. For orthotropic plates, the results obtained by Lee et al. [22] through
Ritz analysis are also plotted for comparison in Figure 7. In Figure 9 the performance of
RHPE-18 is compared with HPE-38 for unsymmetric {0/90) laminates. The performance

Table 2. Fundamental frequencies (in Hz) of different square laminates

Laminate S Ref. [24] HPE-38 RHPE-18
(0/90) 50 11.302 11.302 11.315
100 14.306 11.306 11.309
(45/—-45) 50 14.629 14.630 14.641
160 14.635 14.634 14.639
(+45), 50 25257 25.257 25272

100 25.264 25.264 25.278
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Table 3. Modal frequency estimation by HPE-38 and RHPE-18 corresponding to different boundary
conditions

Mode I (rad/s) Mode II (rad/s) Mode III {rad/s}
Boundary
condition HPE-38 RHPE-18 HPE-38 RHPE-18 HPE-38 RHPE-I8
C-C-C-C 18.20 16.24 29.08 29.18 55.34 55.92
C-C-F-F 10.95 10.97 27.37 2741 460.27 46.42
C-F-C-F 10.22 10.28 26.16 26.26 45.33 45.50
C-C-S-S 13.52 1561 26.14 26.21 48.18 48.33
C-S-C-§ 14.85 198 24,34 24.39 47.18 47.40

of RHPE-18 is excellent for all combinations of d/a and d/c. The frequency parameters
obtained using RHPE-18 for unsymmetric laminates for the first five modes are compared
with results obtained using HPE-38 in Table 4 for various sizes of cutouts. Table 5 provides
the corresponding modal vector data for the first two modes. The difference in nodal
deflections, corresponding to the mode shapes, obtained using HPE-38 and RHPE- 18 are
very small.

Performance Comparison of HPE-38 and RHPE-18

Finally, the performance of HPE-38 and its derivative RHPE-18 are compared for
a cantilever triangular plate. Fundamental frequency estimated by HPE-38 with a coarser

Y

Figure 6. Simply supported rectangular plate
with cutout. X

Figure 7. Typical finite element mesh for quarter-plate of rectan-
gular cutout.
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Table 4. Nondimensional frequency parameter ({) = (wa%/h)/p/E;) of a simply supported unsymmetric
square laminate with a cutout”

Mode 1 Modes II and II1 Mede 1V Mode V
HPE- RHPE- HPE- RHPE- HPE- RHPE- HPE- RHPE-
dia 38 13 38 I8 38 18 38 18
0.1 97.825 97.836 226.409 226.411 389.617 390.628 423.523 425.531

0.2 88.297 88.312 196.320 195.613 332000  334.102 367.65% 370212
03 91.954 90.518 191.477 193.342 321165 325.711 365.782  370.113

0.4 100.365 104.502 187.906 197.761 318.027  323.425 369938 372.260
0.5 115982 115.991 193.143 190.127 328436 334219 392232 396314
0.6 143,138 143.782 214.853  216.755 362.860  367.511 455992  458.732
0.7 192.999 194.010 264.944  267.547 442918  449.053 621.339  628.420
0.8 299.565  302.611 381.844  383.432 431.993  436.221 632229  638.011

“Ply sequence [*45, 0, 90, x45]; layer thickness f, = 0.016 in.; plate slenderness ratio d/t = 104,

Table 5. Modal deflections [+45, 0, 90, =45] laminate with square cutout

Deflection at nodes (as shown in Figure 4)

dla Mode? 5 7 8 10 11 13 4 16
0.1 SX-SY 0.32 0.66 0.66 0.32 0.32 0.66 0.66 0.32
SX-AY 0.00 0.37 -0.37 0.21 —0.21 0.37 -0.37 0.0
0.2 SX-SY 0.35 0.7 0.7 0.35 0.35 0.7 0.7 0.35
SX-AY 0.0 04 -04 0.23 =023 0.4 -04 0.0
0.3 SX-8Y 0.35 0.68 0.68 0.35 0.35 0.68 0.68 0.35
SX-AY 0.0 0.48 -0.48 0.26 -0.26 0.48 -0.48 0.0
0.4 SX-8Y 0.31 0.65 0.65 0.31 0.31 0.65 0.65 0.31
SX-AY 0.0 0.71 -0.71 0.33 -033 0.71 -0.71 0.0
0.5 SX-SY 0.39 0.67 0.67 0.39 0.39 0.67 0.67 0.39
SX-AY 0.0 0.72 -0.72 0.29 -0.29 0.72 -0.72 0.0

28X, symmetric about the X axis; SY, symmetric about the Y axis; AX, antisymmetric about the X axis; AY,
antisymmetric about the Y axis.

mesh is compared to that of RHPE-18, having approximately the same active DOF. Results
are included in Table 6. It may be noted that the performance of the original element
{HPE-38) in estimating natural frequencies is slightly better than that of the condensed
element corresponding to the same (or nearly same) DOF. However, the difference is
small, such that the reduced element may be considered more expedient for general
dynamic analysis.

CONCLUSION

A reduced, high-precision, triangular element has been developed for the vibration
analysis of unsymmetric laminates. A new dynamic condensation procedure is adopted
to condense a high-precision 38-DOF element that includes bending-extension coupling.
A semianalytical-numerical approach has been used to obtain the element stiffness and
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Table 6. Comparison of modal frequencies (rad/s) estimated by HPE-38 and RHPE-18 for a cantilever

triangular plate corresponding to similar active DOF

Mode DOF = 60 DOF = 52 DOF = 104 DOF = 90 Converged
no, HPE-38 RHPE-18 HPE-38 RHPE-18 value

| 3.04 315 3.01 3.02 2.83

2 12.51 12.82 12.44 12.60 11.84

3 17.85 18.03 17.78 17.85 17.05

4 29.68 30.01 29.52 29,58 29.08

mass matrices in closed form. The reduced high-precision element has only 18 DOF,
compared to the 38-DOF original element. Through typical numerical experiments it has
been shown that RHPE-18 gives results very close to those with the original element. In
view of the elimination of the numerical integration in the element formulation and the
reduction of DOF, it is expected that this element will be attractive for the dynamic
analysis of unsymmetric laminates.
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