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Geometrical features of a nonlinear wavefront 
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We use the equations of weakly nonlinear ray theory 
(WNLRT), developed by us over a number of years, to 
study all possible shapes which a nonlinear wavefront 
in a polytropic gas can have. As seen in experiments, a 
converging nonlinear wavefront avoids folding itself in 
a caustic region of a linear theory and emerges un-
folded with a pair of kinks. We review the work of 
Baskar, Potadar and Szeftel showing the way in which 
the solution of a Riemann problem of the conservation 
form of the equations of WNLRT can be used to study 
the formation of new shapes of a nonlinear wavefront 
from a single singularity on it. We also study the ulti-
mate result of interactions of elementary shapes on the 
front. 

IN a linear theory of wave propagation, the rays starting 
from various points of an initial wavefront may envelop a 
surface which is called caustic. For a small amplitude 
wave (so that linear theory is valid) propagating in a poly-
tropic gas, which is in uniform state and at rest, the rays 
are straight lines orthogonal to the successive positions of 
the wavefront. Therefore every concave wavefront leads 
to the formation of a caustic and the front itself folds in 
the caustic region with cusp type of singularities as seen 
in Figure 1. 
 The figure represents a very interesting case of a caus-
tic, which starts from the arête (2, 0) and ends on both 
sides at a finite distance at points (5, ± 2) at a time 4√2, 
whereas the front continues to have cusp type of singular-
ity even after the time t = 4√2 due to discontinuities in the 
curvature of the initial wavefront at points (1, ± 2). 
 Experimental results1 showed that the caustic is resol-
ved for a front which is a moderately strong shock front. 
This, of course, was predicted as early as in 1957 (ref. 2) 
using a theory based on heuristic arguments and has been 
subject of discussion by us over a number of years3–7, see 
Figure 2. An important conclusion from these investiga-
tions is that (i) the resolution of the caustic by nonlinear-
ity is accompanied by appearance of a new type of 
singularity on the front, kink (which was called shock–
shock by Whitham) across which the amplitude and the 
normal direction of the front change discontinuously8 and 
(ii) the geometrical features of a weakly nonlinear wave-
front5,9,10 and a weak shock front (moderately weak in the 
sense of Strutevant and Kulkarni) are qualitatively the 

same. Therefore, in order to study geometrical features of 
a shock front, we study those of a weakly nonlinear wave-
front by a simpler set of conservation laws. In this pro-
cess, we also review some unpublished results obtained 
by Baskar, Potadar and Szeftel during 1999. A study of 
geometrical features of a shock using the conservation 
forms of the equations of a weakly nonlinear shock ray 
theory is in progress. 

Basic equations 

Consider a two-dimensional pulse of small amplitude 
propagating in a polytropic gas, which before the arrival 
of the pulse, is in uniform state and at rest. Under a short 
wave or high frequency approximation, the pulse can be 
described by a one-parameter family of nonlinear wave-
fronts. If a shock front appears, these weakly nonlinear 
wavefronts ahead of and behind the shock will keep on 
interacting with the shock and then disappear after that. 
However, we ignore this interaction and trace the history 
of one of these nonlinear wavefronts, as it would have 
been without the interaction. We use appropriate non-
dimensionalization of dependent and independent vari-
ables and denote by m the Mach number of the wavefront. 
Then m is the wavefront velocity divided by the constant 
sound velocity of the undisturbed medium. Let θ be the 
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Figure 1. Linear wavefront propagation in an isotropic homogeneous 
medium with speed of propagation unity. 
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angle which the normal to the nonlinear wavefront (which 
we shall refer to simply as the front) at time t makes with 
a fixed direction, say the x-axis. 
 The position of the wavefront at time t is given para-
metrically by (x(ξ, t), y(ξ, t)), where ξ is chosen such that 
when ξ is fixed and t varies we move along a ray. Then  
(ξ, t) represents a ray coordinate system. We note that for 
the waves under consideration, the ξ = constant curves 
and the t = constant curves form an orthogonal system. 
Therefore, a point on the ray moving with the wavefront 
satisfies 

xt = m cosθ,  yt = m sinθ. (1) 

m is the metric along the rays, i.e. m dt represents an ele-
ment of distance along a ray in the (x,  y)-plane. Let g be a 
function such that g dξ is an element of distance along the 
wavefront. Morton et al. showed that the equations of  
the weakly nonlinear ray theory (WNLRT) for m and θ 
can be written as conservation laws5 

(g sinθ)t + (m cosθ)ξ = 0, (2) 

and 

(g cosθ)t − (m sinθ)ξ = 0,  (3) 

where g satisfies 

g = (m − 1)–2 e–2(m–1). (4) 

Equations (1) to (4) form the complete set of equations of 
our WNLRT. Though the expression for g is actually 
given as g = f(ξ)(m – 1)–2 e–2(m–1), where f(ξ) depends on 
the initial position of the wavefront and amplitude distri-
bution m on it, we can choose ξ suitably5 (as a function of 

the arclength along the wavefront) so that f(ξ) = 1. Then 
g(ξ, 0) is determined from eq. (4) and we can set up an 
initial value problem for the eqs (1) to (3): 

x(ξ, 0) = x0 (ξ), y(ξ, 0) = y0(ξ), (5) 

m(ξ, 0) = m0 (ξ) and θ(ξ, 0) = θ0(ξ).  (6) 

Equations (2) and (3) with initial conditions (6) can be 
solved first and then the position of the wavefront at any 
time can be found by integrating (1) with respect to t (i.e. 
along the rays) with initial condition (5). 
 The system, eqs (2) and (3), is hyperbolic when m > 1, 
i.e. when the gas pressure in the wave is greater than that 
in the unperturbed medium. We restrict our discussion 
only to the situation when m > 1. The characteristic curves 
are 

dξ /dt = −√{(m – 1) /(2g2)} = λ1,  say;   

dξ /dt = √{(m – 1)/(2g2)} = λ2,  say.  

An interesting exact solution of eqs (1) to (6) is available5 
using two receding simple waves in ξ < 0 and ξ > 0. The 

(7) 

Figure 2. Successive positions of a shock front starting from an ini-
tial shape of the type shown in Figure 1. Rays are shown by broken 
lines and kinks by dots. 

 

Figure 3. Comparison of the successive positions of the shock fronts 
(by NTSD and Whitham’s theory) and a nonlinear wavefront starting 
with same initial front (y2 = 8x for 0 < x < 1 and y −1 = ± (4x – 0.5) for 
x > 1) and same initial amplitude distribution. 

 

a 

t=12    t=14   t=16   t=18   t=20 

b 

t=22     24    26    28    30 



RESEARCH ACCOUNT 

CURRENT SCIENCE, VOL. 79, NO. 7, 10 OCTOBER 2000 963

solution shows that the caustic is completely resolved due 
to nonlinearity and the wavefront emerges unfolded. Fur-
ther, extensive numerical solutions6 of these equations 
again lead to the same result: converging rays starting 
from concave parts of an initial wavefront are not allowed 
to converge due to nonlinearity and the nonlinear wave-
front, which emerges unfolded, develops kinks. Kinks are 
images in the (x, y)-plane of shocks in (ξ, t)-plane of the 
conservation laws (2) and (3). Figure 3 shows results of 
one numerical computation showing the shapes of a 
nonlinear wavefront6 and a shock front by the new theory 
of shock dynamics (NTSD)7 verifying the assertion that 
geometrical features of these two types of fronts are quali-
tatively similar. For a shock front by NTSD, we need an 
additional initial data which is the distribution of normal 
derivative of a quantity (say density) behind the shock. 
 

Elementary wave solutions and their interpretation 
as elementary shapes 

Elementary wave solutions of eqs (2) and (3) are solutions 
of the form m(ξ, t)= m(ξ /t), θ(ξ, t) = θ(ξ /t). These are 
centred rarefaction wave solutions with centre at the ori-
gin and shock waves passing through the origin. 

 We denote centred rarefaction waves of first and sec-
ond characteristic family by 1-R and 2-R, respectively. In 
a 1-R wave, the corresponding Riemann invariant is con-
stant, i.e. θ +√(8(m – 1)) = constant. Suppose the constant 
state on the left of the 1-R wave in the (ξ, t)-plane is  
(ml, θl), then by rotation of the coordinate axes we can 
always choose θl = 0, i.e. for the 1-R wave we have (see 
relation (6.57), ref. 5) 

θ + √(8(m −1)) = √(8(ml −1)).  (8) 

If the state on any straight characteristic in the 1-R wave 
in the (ξ, t)-plane be (m, θ), then λ1(ml) < λ(m) which 
implies ml > m. Then the relation (8) gives θ > 0. At  
the trailing end of the 1-R wave in ξ-space, the wave 
merges into a constant state (mr, θr) and these inequalities 
remain valid i.e. mr < ml and θr > 0. Figure 4 a represents 
a typical 1-R wave solution in the (ξ, t)-plane and Figure 
4 b represents its image in the (x, y)-plane. Similarly, Fig-
ure 5 a represents a typical 2-R wave solution in the (ξ, t)-
plane and Figure 5 b its image in the (x, y)-plane, where 
we note that that mr > ml and θr > 0. We call a shape of a 
front in the (x, y)-plane obtained from an elementary wave 

Figure 4.  a, Example of the 1-R wave, i.e. centred simple wave of 
the first family in the (ξ, t)-plane. The fan of characteristic curves is shown; 
b, Geometrical features of the front associated with the solution in a. 

 

a 

b 

Figure 5. a, Example of the 2-R wave, i.e. centred simple wave of 
the second family in the (ξ, t)-plane. The fan of characteristic curves 
is shown; b, Geometrical features of the front associated with the solu-
tion in a. 

 

a 
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solution in the (ξ, t)-plane as an elementary shape. We 
observe that the elementary shapes in Figure 4 b (we  
denote it by R1) and Figure 5b (we denote it by R2) are con-
vex smooth wavefronts and look almost the same 
geometrically but R1 in Figure 4 b propagates downwards 
on the wavefront whereas R2 in Figure 5 b moves upwards. 
Note that the rays in Figure 4 b cross the R1 region from 
below whereas in Figure 5 b they cross R2 from above. 
 When (ml, 0) and (mr, θr) satisfy appropriate jump con-
ditions (see relation (6.67), reference 5), we get one of the 
two shocks 1-S and 2-S joining two constant states (ml, 0) 
and (mr, θr) and passing through ξ = 0 at t = 0. The jumps 
in θ and m across a shock satisfy (since θl = 0) 

cos θr = (mrgr + mlgl) ⁄(mlgr + mrgl).  (9) 

Since the Lax shock inequality implies λ1(mr) < λ1(ml) for 
1-S and λ2(mr) < λ2(ml), for 2-S, we get mr > ml for 1-S 
and mr < ml for 2-S. From the expression for g it follows 
that g decreases after crossing the shock (gr < gl for 1-S 
and gr > gl for 2-S). The jump relations from (2.2) and 
(2.3) give 

sgr sinθr = gr(mr
2 – ml

2) ⁄ (mlgr + mrgl), (10) 

where s is the shock velocity in the (ξ, t)-plane which is 
negative for 1-S and positive for 2-S. This relation shows 
that for both shocks θr < 0. The images of 1-S and 2-S in 
the (ξ, t)-plane to the (x, y)-plane are elementary shapes 
of a front, which are 1-kink (denoted by K1) and 2-kink 
(denoted by K2) as shown in Figure 6 a and Figure 6 b, 
respectively. 
 

Solution of the Reimann problem and  
interpretation 

In this section we briefly review some recent work of 
Baskar, Potadar and Szeftel (1999). A Riemann problem 
for the system, eqs (2) and (3) consists of solving the sys-
tem with following initial conditions 
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where ml, mr and θr are constant. 
 We define curves Rα and Sα (α = 1, 2) as loci of the 
points (mr, θr) which can be joined to the point (ml, 0) by 
α-R and α-S waves. Figure 7 shows these curves for a 
typical value of ml = 1.2. We note that nonlinear ray  
theory is valid only for small values of m – 1, say for 
0 < m – 1 < 0.25. 

Figure 6 a, b. Rays are neither created nor lost across a kink but 
suddenly change their direction and since g decreases after it crosses 
the kink path, the rays emerge compressed. 

 

a 

b 

K1 

 K2 

Figure 7. Rα and Sα (α = 1, 2) curves in the (m, θ)-plane for m = 1.2. 
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 If we do not go into the question of existence of the 
curves into consideration, the method of solution of  
the Riemann problem is simple. Suppose (mr, θr) lies in 
the domain A bounded by curves R1 and R2 as shown in 
Figure 7. We draw a curve Ri2 which represents the set of 
points joining (mr, θr) by 2-R wave to an intermediate 
state (mi, θi), which lies on the R1 curve. Thus, in this case 
the solution consists of the state (ml, 0) on the left of a  
1-R wave continuing up to an intermediate constant state 
(mi, θi), which ends into a 2-R wave to the right of which 
we have the final state (mr, θr) (see Figure 8 a). The shape 
of the wavefront at t = 0 and t = t1 > 0 is shown in Figure 
8 b. Since (ml, 0) is a state on the left, it can be joined to 
an intermediate state (mi, θi) on its right only if (mi, θi) 
lies on R1 and not on R2. 
 We describe this result symbolically as 

(mr, θr) ∈ A → R1R2,  (12) 

which means that when (mr, θr) is in A, the resultant wave-
front has an elementary shape R1 propagating below, and 
R2 propagating above and these two are separated by a 
section of plane (or straight) front. Similarly we get the 
result 

(mr, θr) ∈ B → K1R2,  (13) 

as shown in Figure 9. Other results are, 

(mr, θr) ∈ C → K1K2,  (14) 

(mr, θr) ∈ D → R1K2.  (15) 

Asymptotic result of a nonlinear wavefront6 when the ini-
tial wavefront is as in Figure 2 can be easily obtained. We 
note that when we observe the wavefront from a very 
large length scale, the central curved part of the initial 
wavefront tends to a point and the initial data reduces to 
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Choosing the direction of the x-axis perpendicular to  
the lower part the wavefront, solving the corresponding  
Riemann problem and rotating back the x-direction we get 
the following solution of eqs (2), (3) and (16) 
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Figure 9. When (mr, θr) is in B, the front consists of a K1 propagating 
downward and R2 propagating upward. 

 

Figure 8. a, Solution of the Riemann problem when (mr, θr) is in A; 
b, Shape of the wavefront at t = 0 and t = t1 > 0 when (mr, θr) is in A. 
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where mi is given by the equation 

mi gmi + ml gml = (mi gml + ml gmi) cosθl,  (18) 

and 

)}./(){( 2222
mimlli ggmms −−√=   (19) 

This solution when mapped into the (x, y)-plane gives  
the shape of the wavefront as shown in Figure 10. 
 Transition from one shape of the wavefront to another 
shape (e.g. from R1R2 to K1R2) as the point (mr, θr) crosses 
curves R1, R2, S1 or S2 has also been discussed. The results 
of transitions lead to beautiful geometrical patterns. 

Interaction of elementary shapes 

Elementary shapes on a nonlinear wave propagate on the 
front. Two elementary shapes, separated by a plane por-
tion of the front, may or may not interact. The process of 
interaction may take finite or infinite time depending on  
 

the strengths of the two elementary shapes. It is not possi-
ble to visualize the shape during the process of interaction 
without full numerical solution of the conservation laws, 
eqs (2) and (3). However, when the interaction period is 
finite we can easily obtain the final results, which will 
again consist of a pair of elementary shapes. All these 
geometrically beautiful results can be studied from the 
corresponding results on the interaction of simple waves 
and shock waves in the (ξ, t)-plane12,13. We can use Figure 
7 for this purpose, where we note that the curves R1, R2, S1 

and S2 are meaningful for more general simple waves (not 
just for centred waves) and shock waves (not necessarily 
passing through the origin in the (ξ, t)-plane). No distinc-
tion has been made between the waves, in which charac-
teristics converge (corresponding to compression waves  
 

Figure 10. Limiting shape, as t tends to infinity, of the nonlinear 
wavefront originating from an initial front as in Figure 2. 

 

 K1 path 

 K2 path 

Figure 11. Successive positions of an initially sinusoidal shock front 
and rays plotted at t = 0, 1, 2, . . . , 10. Kinks have been shown by dots. 

 

Figure 12. a, The front R1K1 before the interaction; b, The front K1R2 

after the interaction. 

 

a 

b 
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in gas dynamics), and a corresponding shock. This is jus-
tified because we are considering only small changes in 
m. We use the symbols introduced in the previous section 
with a slight modification. K2K1 would mean a kink of sec-
ond family on the lower part of the front (smaller values 
of ξ) separated by a plane part (mj, θj) of the front from a 
kink of the first family on the upper part of the front. To 
reach a state (mr, θr) from (ml, 0) through K2K1, we need to 
move along S2 from (ml, 0) up to (mj, θj) and then move 
along Sj1 from (mj, θj) up to the point (mr θr). Clearly (mr, 
θr) is in the region C, which implies 

K2K1 → K1K2,  (20) 

with obvious physical interpretation. Such interactions of 
kinks are clearly seen in the case of propagation of an ini-
tially sinusoidal front7, reproduced here in Figure 11. 
 All possible interactions of elementary shapes, namely 
K1K1, K2K2, R1K1, R2K2, K1R1, K2R2, R2R1, R2K1 and K2R1 in addition to 
K2K1 mentioned earlier, have been discussed. A geometrical 
representation of one of these cases, namely 

R1K1 → K1R2 

when K1 is strong compared to R1 has been shown in Figure 
12. Note that the scales for x and y used in Figure 12 a 
and b are very different. 
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