ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

General partitioning on random graphs

Subramanian, CR and Madhavan, CEV (2002) General partitioning on random graphs. In: Journal of Algorithms, 42 (1). pp. 153-172.

Journal_of_Algorithms.pdf - Published Version

Download (161kB)
Official URL: http://www.sciencedirect.com/science?_ob=ArticleUR...


Consider the general partitioning (GP) problem defined as follows: Partition the vertices of a graph into k parts W-1,..., W-k satisfying a polynomial time verifiable property. In particular, consider properties (introduced by T. Feder, P. Hell, S. Klein, and R. Motwani, in "Proceedings of the Annual ACM Symposium on Theory of Computing (STOC '99), 1999" and) specified by a pattern of requirements as to which W-i forms a sparse or dense subgraph and which pairs W-i,W-j form a sparse or dense or an arbitrary (no restriction) bipartite subgraph. The sparsity or density is specified by upper or lower bounds on the edge density d is an element of [0, 1], which is the fraction of actual edges present to the maximum number of edges allowed. This problem is NP-hard even for some fixed patterns and includes as special cases well-known NP-hard problems like k-coloring (each d(W-i) = 0; each d(W-i,W-j) is arbitrary), bisection (k = 2; \W-1\ = \W-2\; d(W-1,W-2) less than or equal to b), and also other problems like finding a clique/independent set of specified size. We show that GP is solvable in polynomial time almost surely over random instances with a planted partition of desired type, for several types of pattern requirement. The algorithm is based on the approach of growing BFS trees outlined by C. R. Subramanian (in "Proceedings of the 8th Annual European Symposium on Algorithms (ESA'00), 2000," pp. 415-426).

Item Type: Journal Article
Additional Information: Copyright of this article belongs to Elsevier Science.
Keywords: Np-Hard;Bisection.
Department/Centre: Division of Electrical Sciences > Computer Science & Automation
Depositing User: Users 758 not found.
Date Deposited: 22 Jul 2009 12:15
Last Modified: 19 Sep 2010 04:59
URI: http://eprints.iisc.ac.in/id/eprint/17961

Actions (login required)

View Item View Item