
Mixed Coordinate Tracking of Generalized 
Maneuvering Targets Using Acceleration and Jerk 
Models 

In a recent paper the authors introduced an all-Cartesian 
formulation of a jerk model for tracking highly maneuvering 
targets. Here a more complex but realistic case is considered, 
where target motion modeling and tracking are carried out 
in the 3-D Cartesian frame using measurements obtained in a 
spherical system. The transformation of the measurements into 
the Cartesian system results in nonlinear measurement equations. 
We solve the problem using an extended Kalman filter (EKF) 
approach, and also treat the earlier acceleration model similarly 
for comparison of results. 

I .  INTRODUCTION 

In many practical applications it is necessary to 
accurately track objects with generalized motion, 
i.e., with trajectories that have significant position 
derivatives of several orders. A Kalman filter (KF) 
or its variant is commonly employed for tracking 
maneuvering targets (see e.g. [l]). For such tracking 
it is necessary to model the target motion in an 
appropriate way. One common approach to modeling 
the kinematics is by using the first few derivatives of 
the target displacement. The acceleration models (see 
e.g. [2]) currently used for tracking agile targets use 
terms only up to the second derivative. However, such 
models are not adequate to accurately describe the 
motion of targets with significant position derivatives 
of order higher than the acceleration. 

The problem of model inaccuracy may be 
alleviated by increasing the order of the kinematic 
model of the target to include position derivatives 
up to the jerk or the rate of acceleration. Such an 
attempt has been made in the case of the simpler 
a-P-r tracker [3, 41. The first attempt at developing 
a jerk model for use with KF-based tracking has been 
reported by the present authors in a recent paper 
[5 J which dealt with linear 3-dimensional tracking 
involving both target model and measurements in 
Cartesian space. 

complex but realistic case of mixed coordinate 
tracking. Here, the kinematics of the target are 

In this work, the jerk model is applied to a more 
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Fig. 1. Cartesian and polar coordinate systems. 

modeled in the Cartesian (x, y ,  z) coordinates, but 
the target position measurements are assumed to 
be made in the spherical system, consisting of 
range r,  azimuth angle 8, and elevation angle 4, as 
obtained from a typical monostatic radar system. 
The coordinate systems are shown in Fig. 1. The 
transformation of the vector measurement equation 
from the spherical to the Cartesian coordinate system 
renders it nonlinear in the Cartesian variables. The 
nonlinearity is handled here through an extended 
Kalman filter (EKF) approach in which the equation 
that expresses the radar measurements in terms of 
the state vector is expanded about the predicted state 
by using a Tiiylor series, and ignoring the second 
and higher order terms. The resulting approximate 
measurement equation is linear, but the observation or 
measuremeni matrix becomes time varying in nature, 
and is calculated in every iteration from the predicted 
state variables. 

linearization process manifests itself in lower tracking 
accuracies and, in extreme cases, loss of track. In 
literature there are two methods to circumvent this 
problem. The first [6] helps prevent divergence 
by iterating the estimates three or four times in 
each measurement cycle. The second method [7] 
improves tracking accuracies by dividing the single 
measurement process of range, azimuth, and elevation 
into three sequential subprocesses, with the azimuth 
first measured and processed through an EKF, 
followed by elevation and range in succession. 

A number of authors (e.g. [S-131) have dealt 
with nonlinear tracking problems, but they have 
generally made use of either kinematic models of 
second order (acceleration models) or measurements 
of orientatioiis of the target vehicle. The main 
contribution of the current work is to consider a 
higher order kinematic model (jerk model) for target 
tracking usircg only position measurements as obtained 
from normal radars. The jerk model is compared 
with the acceleration model, which is also formulated 
and analyzed here under mixed coordinate tracking 
conditions. 

The degradation due to the approximate 

II. 

A. System Equations 

by the authors in [5] as an extension of [2]. For 

JERK MODEL AND JERK FILTER 

A jerk model for target kinematics was introduced 
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3-dimensional motion, the discrete model in [5] can 
be written as 

elements: 

a5T5 a4T4 4a3T3 -2a2T2 +- 
3 

+ 2aT - 3 + 4e-"T + 2a2T2ePT 
xJ(k + 1> = FJ(k)XJ(k) + wJ(k) (1) 

where ) , e-2aT 

a4T4 
4 1 - 2aT + 2a2T2 - a3T3 + - 

'i' IT y y y . y z z j  X J = [ x  

- 3  3 
'1J '2J ' 3 J  '4J ' 5 J  ' 6 J  

'SJ ' 9 J  'IOJ 'llJ *l2J 

- e-20T + 4 - o T  + f f 2 T 2 e - a T  (1b) 

The terms u , ~ ,  ' 2 J '  etc., (lb) are the driving white 

model. The state transition matrix for the jerk filter is 
noise components for the state equation of the jerk 

given by [5] 

qI4 = q4] = ( l /2a4)(  1 + e-2aT - 2 P T  - a2T2e-"T) 

qZ2 = 2 a ~  

(3a) 

1 - e-2"T + ?!?? + 2aT - 2a2T2 - 4aTe-"T 
3 

T O O  q 2 3  = q 3 2  

= (1 pa4)(  1 + a2T2 - 2aT + 2 a T P T  + e-2aT - 2e-OT) 

qZ4 = q42 = ( l /2a3)(  1 - e-2oT - 2 a T P T )  
(2) 

q33 = ( 1/2a3)(4e-"T - e-2aT + 2aT - 3 )  

where 0 represents a 4 x 4 null matrix, and q34 = q43 = (1/2a2)(1 - 2e-"T + e-20iT) 

B. Measurement Equation and Its Linearization 
(2a) 

0 1  T 41 T =  
Let (Xk,Yk,zk) and (rk,6k,(bk) be the respective 

Cartesian and spherical coordinates of the target at 
the kth time sample. The basic radar measurements 
of the target position consists of its range rk, azimuth 
angle 6, and the elevation angle 4k. The following 
relations are used to transform the measurements from 
the polar (measurement) coordinates to the Cartesian 
(modeling) coordinates: 

I," ," : J* 
In (2a) T is the sample interval between updates, 
and 

p1 = (2 - 2oT + a2T2 - 2ePT)/(2a3) 

q1 = (e-"' - 1 + oT)/a2 

rl = (1 - e-"'>/o 

s1 = e-"T. 

(2b) x k  = rk cos 6, cos 4 k  

y k  = rk sin 6, cos 4 k  (4) 
zk = rk sinq5k 

The equations in (4) can be inverted to yield 
The process noise covariance of the jerk model 
is rk = (xi + y; + Zi)1'2 (5a) 

Q O O  6, = tan-'(yk/xk) (5b) 

Q j ( k )  = 2 ~ ~ 0 ;  0 Q 0 (3) 4 k  = tan-l(Zk/Pk) (5c) 

where pk = (x: + Y:)'/~ is the projection of rk on the 
xy plane (Fig. 1). 

The next step is to linearize (14)-(16) in the 
Cartesian variables xk, yk, and 2,. From (5a) we 
obtain the partial derivatives: a r k / a x k  = xk/rk, 

[. o J  
where U: is the variance of the target jerk, cy is the 
;?@procal of the jerk decorrelation time, and Q 
IS a 4 x 4 symmetric matrix with the following 
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a r k / a y k  = Y k / r k r  d r k / a z k  = z k / r k .  Expanding the 
right-hand side of (5a) in a Taylor series about the 
predicted position ( i k l k - 1  ,j&1,?kIk-1), and retaining 
terms up to the first derivative, 

,. ,. 

.. .. 

Zklk- 1 Y k  Ik- 1 Pklk- 1 
+ z k r  

- Y k j k l k - l ' i ] k - l  'klk-1 

Equations (6) ,  (7), and (8) represent linearized 
expressions for range, azimuth, and elevation, 
respectively, in the Cartesian coordinate system. 

If we now define the vector ZJ of original 
measurements as 

I measured range at ( k  + 1)th instant 

measured azimuth at ( k  + 1)th instant 
measured elevation at ( k  + 1)th instant 

Z J : k + l  = 

(9) 
[ 

and the modified measurement vector ZJ as 

Z;:k+l  = H J : k + l X J : k + l  

tan-'? - 0 tan-'T-- 
i k + l l k  I T  (lo) 

y k +  1 Jk 1 ' k + l l k  Pk+ 1 Ik 

then the measurement equation may be written as 

(1 1) 2' * 
> J : k + l  = H J : k + l X J : k + l  + V J : k + l  

where 

VJ:!i+l = 

1 
1 

range: measurement noise at the (k  + 1)th instant 
azimuth measurement noise at the (k + 1)th instant 
elevation measurement noise at the (k  + 1)th instant 

(1 1 4  
h, 0 0 0 h, 0 0 0 h, 0 0 0 

h, 0 0 0 h, 0 0 0 h, 0 0 0 

[ 
[ H J I k + , =  h, 0 0 0 h, 0 0 0 0 0 0 0 . 

(1 1b) 

From equations (21), (22), (24), and (17)-(19), the 
non-zero elements of the matrix in (1 lb) are 

hl = ' k+l\k/ 'k+llk  

h2 = i k + l l k / ; k + l l k  

h3 = ik+llk/'k+llk 

Ill. ACCELERATION MODEL AND ACCELERATION 
FILTER 

Although the major focus in this work is on the 
derivation and study of a jerk model and a compatible 
tracking filter for 3-dimensional mixed coordinate 
tracking, we also study an acceleration model and 
the corresponding filter under identical tracking 
conditions for the purpose of comparison. Since the 
derivation of the acceleration modeufilter equations 
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proceeds in a manner parallel to the jerk filter, only 
the results are given here for the acceleration filter. 

Using the subscript A to denote the acceleration 
modevfilter, 

where r is the vector with components x ,y ,z ,  and the 
constants bo, b, ,  b,, and b, are determined through 
the least-squares process. Following the derivation 
given in the Appendix, for the jerk model, 

' A : k + l  = + w A : k  

c : k + l  = H A X A : k + l  +'A:k+l 

where 

X , = [ x  x i y y y z z ZIT (15) 

(16) 
w A  = [ ' ,A  ' Z A  ' 3 A  ' 4 A  ' 5 A  ' 6 A  ' 1 A  ' S A  ' !9AlT '  

The elements of (16) are the driving noise components 
for the state equation of the acceleration model. The 
modified measurement vector Z; has a definition 
similar to (IO). 

The state transition matrix for the acceleration 
model is given by [5] 

T' 0 0 '  

(17) 

where 0 refers to a 3 x 3 null matrix, and 

[PT + a T -  11/a2 
[l -e-"T]/a 

e-aT 

and the noise covariance matrix by 

Q A  = ~ C U O ;  0 Q' . :] [" 0 0 Q' 
where gi  is the variance, and o the correlation 
parameter, of the target acceleration. The elements of 
the 3 x 3 symmetric matrix Q' are available in [2]. 

The measurement matrix for the acceleration filter 
is 

(19) 

(20) 

h, O O h , 0 0 h 3 0 0  
h, 0 0 h, 0 0 0 0 0 
h, 0 0 h, 0 0 h8 0 0 

with the elements h, though h8 as given by (12). 

IV. INITIALIZATION OF FILTERS 

The EKF in each case (jerk as well as acceleration 
models) is initialized by using a least-squares fit. A 
natural choice is to use a third-order polynomial for 
the jerk model and a second-order polynomial for the 
acceleration model, i.e., 

r(t) = bo + b,t + b,t2 + b3t3 

r(t) = bo + b,t + b,t2 

(jerk model) (21) 

(acceleration model) (22) 

where 

[LI = 
C T ( ~ -  1) C[T(i- 1)12 C[T(~-  1)i3 

CT(i - I) C[T(i - 1)12 C[T(i - 1 ) i 3  C [ T ( i  - 1)i4 

C[T(i- I ) J ~  C[T(i- 1113 C [ T ( ~ -  i l l 4  C[T(~-  1)i5 

C[T(i - 1)13 C[T(~ - 1114 C[T(i - i l l 5  C[T(i - 1)16 i n  (23a) 

and, for the acceleration model, [i] = 

[ I 
1 

CT(i- 1 )  CT(i - 1 )  CT(i - I )  

[LI-' Cx,~i )~( i  - 1 )  Cy,, , ( i )T(i-  1 )  Cz,,,(i)T(i - 1 )  

Cz,,,(i)[W - 1)IZ Cx,,,(i)[T(i - 111' Cy,( i ) [T(i  - 
(24) 

where 

C T ( i  - I )  C [ T ( ~  - Ill2 
[L] = CT(i - 1) C[T(i - 1)12 C[T(i - l)I3 

c [ T ( ~  - 1)i2 c [ T ( ~  - 1)13 c [ T ( ~  - 1)i4 I '  (244 

Note that common symbols for the matrix L and the 
constants bo, b, ,  and b, have been used in the two 
models only for the sake of notational uniformity; 
in general they will not have the same values in the 
two models. The variables xm,ym,zm, in (23) and (24) 
refer to the measured values of x ,y ,z ;  in practice they 
are derived from the polar measurements rm, Om, 4m by 
using (4). 

V. TRACKING PERFORMANCE OF MODELS 

Using the formulation developed in the earlier 
sections, the mixed-coordinate 3-dimensional tracking 
performance of the jerk and acceleration models/filters 
were evaluated through simulation. The parameters 
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TABLE I 
Simulation Parameters 

Maneuver Level 

Parameter HI gh Medium LOW 

Angular velocity of the turn (rad s-') 
Peak velocity in x and y (m s-l) 

Peak acceleration in x and y (m s-~) 
Peak jerk in x and y (m sP3) 
Standard deviation of range noise ur (m) 
Standard deviation of angle (AzEl) noise ag,ug (mrad) 
a for acceleration model (s-') 
a for jerk model (s-') 
Process noise covariance for acceleration model QA (m2 s-~) 
Process noise covariance for jerk model Q, (mZ s - ~ )  

0.1414 
495.0 

70.0 
9.9 

10.0 
5.0 
0.01 
0.01 

100..0 
2 .o 

0.097 1 
339.7 
33.0 

3.2 
10.0 
5.0 
0.05 
0.0001 

20.0 
0.2 

0.061 1 
214.0 

13.0 
0.8 

10.0 
5 .O 
0.5 

0.0001 
2.0 
0.03 

used for the simulation, and the comparative behavior 
of the two tracking filters, are outlined in this section. 

A. Trajectory Parameters 

The target is assumed to fly at constant speed 
along a circular trajectory of 3500 m radius with 
its center located at x = y = 5000 m relative to 
the tracker. The plane of the circle is at a constant 
height z = 1000 m. The plan view of the trajectory is 
shown in Fig. 2. A circular trajectory has non-zero 
derivatives of all orders including jerk. For the 
trajectory chosen, the x and y position, velocity, 
acceleration, and jerk (as also the higher derivatives) 
are sinusoidal functions of time: 

x = r coswf 

X = -wrsinwt = v, 
x = -w2r cos wt = a, 

x = w3rsinwt = j ,  

y = r sinwt 

y = wrcoswt = vy 
j ;  = --w2rsinwt = a ' 

Y = -w3rcoswt = j 

and 

... ... 

(25) 

With such a trajectory, comparison of the steady state 
errors for different models is relatively straightforward 
as the pattern of maneuver is periodic and repetitive. 

Monte Carlo simulation of tracker performance is 
carried out for three levels of target maneuver (high, 
medium, and low) induced by varying the flight speed 
of the target along the circular path of Fig. 2. The 
three levels correspond to peak lateral acceleration 
values of about 7 g, 3 g ,  and 1 g, respectively. For ' 

each maneuver level, both acceleration and jerk filters 
are run (for 3000 time samples at 0.1 s interval) for 
50 sets of random noise samples, and their rms errors 
are compared. Optimum a and Q values are chosen 
for best performance of each of the two filters as 
outlined in [5] .  The parameters of simulation for the 
three maneuver levels are shown in Table I. 

The parameters for the high maneuver trajectory 
are shown in Fig. 3 for the first 2000 time samples. 
As per (25) the x and y parameters are identical but 
for a phase shift, and this is apparent from the figure. 

' 

~ CIRCULAR FLIGHT PATH AT 
1 KM HEIGHT ABOVE GROUND 

Fig. 2. Cartesian-coordinate trajectory parameters (in plan view, 
i.e., x-y plane projection) of maneuvering target used for tracker 

performance evaluation. 

The rms tracking errors of both acceleration and jerk 
models resulting from the Monte Carlo simulation 
are shown in Fig. 4, and the peak and average' 
values of the: steady-state errors over the tracking 
interval are shown in Table 11. For all variables both 
peak and average estimation errors of the jerk filter 
(solid curves) are found to be lower than those of 
the acceleration filter (dotted curves) in the steady 
state. The adlvantage of the jerk filter is modest for 
the position variables, but is marked for the higher 
derivatives such as velocity and acceleration in x 
and y. Along the z-axis the improvement due to the 
jerk model is modest for all derivatives, since it is a 
"passive" or no-maneuver axis. The cyclic fluctuations 

'The errors being cyclic, the average value of finite data segments 
would be influenced by the data length. However, since the data 
here (we utilize: 3000 time samples, which is longer than the time 
base shown in [:he figures) includes multiple cycles of variation, we 
use the mean value as an indicator for comparison of the two filters. 
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TABLE I1 
Summary of Monte Carlo Simulation Results Shown in Fig. 4 

Statistic- 

Error1 

x-position (m) 
x-velocity (m s-l) 
x-acceleration (m s-2) 
x-jerk (m s - ~ )  
y-position (m) 
y-velocity (m s-l) 
y-acceleration (m s-*) 
y-jerk (m s - ~ )  
z-position (m) 
Range (m) 
Elevation (mrad) 
Azimuth (mrad) 

Maximum* 

Jerk Model Accn Model 

20.7 
20.0 
12.8 
5.8 

22.5 
22.7 
13.9 
5.8 

21.9 
6.1 
2.6 
3.0 

25.1 
31.5 
23.8 

22.6 
28.1 
22.4 

23.3 
6.9 
3.0 
3.2 

- 

- 

Mean* 

Jerk Model Accn Model 

11.1 
11.6 
8.0 
3.6 

10.6 
10.9 
7.4 
3.4 

13.2 
4.5 
1.8 
2.0 

12.0 
15.5 
12.9 

11.4 
14.4 
12.2 

14.3 
5.0 
1.9 
2.2 

- 

- 

Note: *The maximum and mean values have been computed without considering the initial transients. 

HIGH MANEUVER TRAJECTORY 
I 

HIGH MANEUVER TRAJECTORY 
10000, . . I 

8wO 8000 

E" 5 6W0 
- 
a > 4000 

a 
3 -  

2wo 2000 

O' 5M) lk l& 2daa 2500 3&0 

403 400 

z 200 - E s 200 
5 0  
2-200  5 -200 

z o  

400 400 

500 1wO 1500 Zoo0 2500 3wO 

ma, , HIGH ?NEWER TRAJECTORY , , 
1500 

0' I 15wo/ 5: 1" 1" 2" 2" 3yJ 

I 
500 1wO 1500 2530 2500 3Mo 

I , 
50 0 25 50 

N̂  P 0 0 2  

I o 1  
L O  Z o  5 0 1 5  

50 -50 0 05 

500 loo0 1500 2wo 25w 3ooo 

10 10 

5 5  E 5  

s 2 -5 
r 2 -5 

5 ,  E O  

-4n -1 0 
500 1OW 1500 2000 2500 3W0 

Time (Sample Number) 
MO loo0 1500 zoo0 25w 3W0 

Time (Sample Number) 

J 
500 1WO 1500 2W0 2500 3wO 

I l 
500 1WO 1500 .?WO Z 5 w  3000 

Time (Sample Number) 

Fig. 3. Target position coordinates and their derivatives as functions of time for high-maneuvering situation. 

in z-errors are due to coupling with x and y through 
the EKE Note that the jerk error cannot be compared 
for the two filters, since the acceleration filter does not 
yield this estima;e. 

The initial values of the covariance matrix diagonal 
elements were chosen to be high for both filters, and 
the off-diagonal elements were assumed equal. The 
steady-state performance of the filter was found to 
be insensitive to these values. The initialization of 
the states was carried out as outlined in Section IV. 
The plots in Fig. 4 show that the initial transients 
are within manageable limits. The jerk filters exhibit 

relatively large transients, as expected due to the 
inclusion of a higher derivative. 

of the jerk filter in the above example is due to the 
presence of considerable jerk in the high maneuver 
trajectory. TO compare the two models under less 
demanding conditions, we tested the two models 
also for medium and low maneuver (hence jerk) 
conditions with parameters as given in Table 1. These 
trajectories also show periodic parameter variations 
similar to Fig. 3. The Monte Carlo simulation results 
for these two maneuver levels are shown in Fig. 5 in 

It is possible to argue that the large advantage 
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HIGH MANEVVER: X-ERROR PLOTS 

I 

Maneuver 
Level 

HIGH MANEWER: Y-ERROR PLOTS 
25 I I 

Statistic+ Maximum* Mean* 

Errorl Jerk Model Accn Model Jerk Model Accn Model 

20 

t 1 5  

- 
E - E20 

E 
3 10 > 
a $10 

5 

x-position (m) 
x-velocity (m s-l) 
x-acceleration (m sp2) 
x-jerk (m s-~) 

0- 5W 1OW 15W 2WO 

15.8 19.9 
11.5 18.2 
5.8 10.3 
1.8 - 

0' I 
500 1000 15M) 2030 

0' 5W 1WO 15M) 2OW J 
I 

J 
500 1OW 1500 2wO 

0' I 
500 loo0 1500 :ow 

I 
5W 1WO 1500 2030 

Time (Sample Number) 

0' J 5W 1wO 1500 :?WO 
Time (Sample Number) 

HIGH MANEUVER: Z- AND SPHERICAL ERROR PLOTS 

20 

t 1 5  
E - 
$ 10 
N 

5 

500 1wD 1500 2wO 
10 

- 8  

t 6  
I 

l 4  

ixlo4 500 1WO 15W 2WO 

0 I 
5W 1000 1500 zoo0 

Time (Sample Number) 

Fig. 4. Tracking errors in position coordinates and their derivatives for highly maneuvering target. . . . . Acceleration filter, 
Jerk filter. 

L O W  

x-position (m) 
x-velocity (m s-l) 

x-acceleration (m s - ~ )  
x-jerk (m s-~) 

13.8 15.5 
6.0 9.7 
2.0 3.7 
0.4 - 

7.4 8.1 
3.8 5.1 
1.3 2.1 
0.3 - 

Medium 

9.2 10.0 
6.9 9.3 
3.4 5.6 
1.1 - 

~~ 

Note: *The maximum and mean values have been computed without considering the initial transients. 

an abridged form to minimize the number of plots, 
and a summary of results appears in Table 111. The 
error plots clearly show that the jerk filter continues to 
be distinctly superior to the acceleration filter even for 
moderate to low maneuver and jerk levels. 

VI. SENSITIVITY ANALYSIS 

The inclusion of higher derivatives has the 
potential of rendering models more sensitive to 
parameter variations relative to the optimum ones. 
To study this possibility, we simulated a model-filter 
mismatch situation. For space constraints, only the 
medium maneuver case (3 g circular maneuver) 
is reported here. The correlation parameter, which 

is 0.05 for the acceleration model in Table I, was 
increased by a factor of 20 to 1.0, and the a for 
the jerk model (0.0001 in Table I) was increased 
by an even 1,arger factor of 100, to a value of 0.01. 
Representative results are shown in Fig. 6, and the 
peak and average errors are quoted in its caption. 
The top plot there compares the jerk and acceleration 
filters for the perturbed values of a, and shows that 
the jerk modlel retains its marked superiority over 
the acceleration model, The bottom plot shows the 
jerk filter performance for the original (Table I) and 
perturbed a! values to be nearly identical, testifying 
to the robustness of the filter even for very high 
departures of the model parameters. 
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LOW MANEWER: XIRROR PLOTS MEDIUM MANEUVER: X-ERROR PLOTS 
20, , , I 20, I ,  i 

-15 -15 - - 
t 5 10 : 10 

z 5  0 

500 1030 15W 2oW 

0' 1 
500 1000 15w 2oW 

5 1 I 1 

01 5w 1000 1Mo 2000 I 0- 500 1wO 1500 2030 

Time (Sample Number) Time (Sample Number) 

Fig. 5. Tracking errors in selected position coordinates and their derivatives for moderately maneuvering target (left column) and 
low-maneuvering target (right column). . . . . Acceleration filter, - Jerk filter. 

VII. CONCLUDING REMARKS 

The main contribution of this work is to evolve 
the analytical framework for accurate tracking of 
generalized maneuvering targets in 3-dimensional 
space when the modeling of target motion and the 
measurements used for tracking purposes are in 
different types of coordinate systems. An enhanced 
target motion model is used which includes all terms 
up to its jerk. A realistic situation is considered 
where the target motion is described in a Cartesian 
coordinate system, while the measurements are 
performed in a polar coordinate system, as is normal 
with monostatic tracking radars. The resulting 
coordinate transformation introduces nonlinearities 
into the modeling process, which are handled through 
the EKF approach. The development here is complete, 
providing the equations as a handy reference to those 
interested in four-state tracking. 

To show the advantage gained by the use of a 
jerk modeyfilter combination under mixed-coordinate 
tracking conditions, an acceleration modeyfilter is also 
derived under identical conditions. The 3-dimensional 
mixed-coordinate tracking performance of the jerk 
filter, and its parameter estimation accuracy vis-&vis 
the acceleration filter, are demonstrated through Monte 
Carlo simulation using a circular target trajectory 
offset from the origin. The jerk filter is shown to 
perform distinctly better than the acceleration filter 
in terms of its tracking performance, especially when 
estimating the higher order motion derivatives of the 

MEDIUM MANEUVER: FILTER MISMATCH 
r 1 

0' 1 500 1000 1500 2000 

1 
500 1000 1500 2000 

Time (Sample Number) 

Fig. 6. Filter behavior for medium-maneuver target under 
model-filter mismatch conditions, showing x-acceleration plots: 
Top: mismatched jerk (-) and acceleration ( . . . .) filters; 
bottom: optimum (-) and mismatched (.  . .) jerk filters. 

Note that solid and dotted curves nearly overlap in bottom plot, 
giving appearance of single curve. For jerk filter, cyopf = 0.0001. 

amismatched = 0.01. and for acceleration filter, aopt = 0.05, 
amismatched = 1 .O. Steady-state statistics of mismatched jerk filter 
(both top and bottom, units m s - ~ )  are: max = 5.4, mean = 3.4; 

and for mismatched acceleration filter (top), max = 10.3, 
mean = 3.37. Statistics of optimum acceleration filter (bottom) are 

as in Table 111, i.e., max = 5.8, mean = 3.4. 

target. The simulation reveals that the advantages of 
the jerk filter can be very pronounced even when a 
small amount of jerk is present in the target maneuver. 
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APPENDIX 

We consider the acceleration model first. 
Considering position, velocity, and acceleration terms, 
the equation of motion along the x direction is 

x ( t )  = x(0) + t i (0 )  + (;) i ( 0 ) .  (26) 

The constants x(O) ,  i ( O ) ,  and x(0) in (26) correspond 
respectively to b,,, b,,, and b,,/2 in a second-order 
polynomial equation in time 

x(t) = b,, + bxlt  + bX2t2. (27) 

The task is to obtain the constants b,,, b X l ,  and b,, 
which minimize the sum of the squared errors of the 
first n measurements of x with respect to (27). This is 
given by the equation (Kreyszig, 1993): 

[ ; t i  Et? Cti Et? Et:] [ ””1 = [ .“::i] (28) 

Et? Et: Ctf b,, E x i t ;  

where xi is the ith measurement of x at the time 
instant t i ,  and the summations are performed over the 
n samples. 

Equations similar to (28) can be written for the y 
and z axes. In normal practice, the first measurement 
sample x 1  is taken at the time instant ti = 0. Hence 
ti = T(i - 1 )  where T is the sampling interval. With 
this understanding, and noting that b, = [b,, by, b,,IT 
for k = 0,1,2, (24) is readily obtained. 

For the jerk model, the equation of motion in the x 
direction is 

x( t )  = x(0)  + tX(0) + (;) $0) + (f) X(0). 

(29) 
Writing the corresponding equations for the y and z 
directions, and following a procedure similar to the 
acceleration model above, the derivation of (23) is 
straightforward. 
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