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Abstract. Though the use of the integrated force method for linear investiga-
tions is well-recognised, no efforts were made to extend this method to non-
linear structural analysis. This paper presents the attempts to use this method
for analysing nonlinear structures. General formulation of nonlinear structural
analysis is given. Typically highly nonlinear bench-mark problems are consi-
dered. The characteristic matrices of the elements used in these problems are
developed and later these structures are analysed. The results of the analysis are
compared with the results of the displacement method. It has been demonstrated
that the integrated force method is equally viable and efficient as compared to
the displacement method.
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1. Introduction

Force method in the pre-computer era was the popular analysis tool for civil, mechanical
and aerospace engineering structures. This popularity can be attributed to its ability to
determine accurate estimates of forces in the structure. During the formulative period of
structural analysis by matrix methods, earnest research was directed to automate the force
method, which includes the computer-assisted generation of compatibility conditions. This
effort, by and large, was not fully successful (Robinson & Haggenmacher 1971; Topou
1979; Kaneko et al 1983); redundant analysis being the main cause of the failure; it acted
as the dominating road block in the path of force method automation.

A new formulation termed the Integrated Force Method (IFM) was proposed by Patnaik
(1973) for the analysis of discrete and continuous systems. IFM is a force method of
analysis which is independent of redundants and basis determinate structure of the classical
force method. A variational functional has also been established (Patnaik 1986). The
stationary condition of the functional yields the equilibrium equations, compatibility and
natural boundary conditions. This method has been successfully used on many linear struc-
tures for their static behaviour such as skeletal frames (Patnaik & Yadagiri 1989), plane
stress (Nagabhushanam & Srinivas 1991), plates and three dimensional problems (Kaljevic
et al 1996b). Realizing its potential in structural analysis, it was further extended to consider
investigations on dynamics (Patnaik & Yadagiri 1976) and optimization (Patnaik et al 1996)
of structures.
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Looking at the existing nonlinear structural analysis literature, almost all the inves-
tigation appear to use the displacement method except for a few (Oden & Neighbors 1976)
who use the force method (most of the time restricted to skeletal structures). This paper
presents the extension of the integrated force method to study nonlinear structural problems.
The scope of the paper is restricted to the analysis of the geometric nonlinear behaviour of
the structure. A number of classical nonlinear beam type of structures are considered. They
are analysed with IFM and their results are compared with those from the displacement
solution. The studies demonstrate that IFM is an equally viable alternative method to the
present very popular displacement method.

2. Basic theory of integrated force method

This section describes the development of basic theory of the integrated force method and
presents its governing equations. A structure in the force method of analysis can be desig-
nated `̀ Structure (n;m)'' where �n;m� are the force and displacement degrees of freedom.
The n component force vector fFg must satisfy m equilibrium equations along with r �
�nÿ m� compatibility conditions. For a discrete structure, the equilibrium equations can be
symbolized as

�B�fFg � fPg: �1�
The equilibrium equations represent the vectorial summation of the internal forces fFg to
the external load fPg at the nodes of the finite element discretization. fFg, the internal
forces are the primal variables of equilibrium. The equilibrium matrix �B� is rectangular
and sparse in nature and its generation is straightforward. The internal energy (IE) of the
structure considering the nodal displacements fXg of the structure can be written as

IE � 1
2
fXgTfPg � 1

2
fXgT �B�fFg: �2�

The internal energy of the structure can also be written considering the deformations of the
elements as follows.

IE � 1
2
fFgTfbg �3�

where fbg represents the vector of generalised internal deformations of the elements.
Considering (2) and (3), we can write

1
2
fFgT��B�TfXg ÿ fbg� � 0: �4�

As fFg is not a null vector, it leads to displacement deformations relation

�B�TfXg ÿ fbg � 0 �5�
The deformation displacement relation represents n deformations expressed in terms of m
displacements which leads to �nÿ m� constraints on the deformations of the elements. The
constraint on deformations are called compatibility conditions and are expressed through a
compatibility matrix [C] and fbg which can be written as

�C�fbg � 0; �6�
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where [C] is called the compatibility matrix. Compatibility conditions can be further
expressed in terms of primal variables fFg, noting fbg � �G�fFg as

�C�fbg � �C��G�fFg; �7�
where [G] is concatenated flexibility matrix.

Combining (1) and (7), the governing equations of IFM can be symbolized as

�B�
�C��G�
� �

fFg � P

0

� �
�8�

or

�S�fFg � fP�g
Thus both equilibrium and compatibility conditions are simultaneously satisfied in IFM.

[B] and [G] matrices of the structure are obtained by assembling the element equilibrium
and flexibility matrices. Though the generation of elemental [B] and [G] matrices is
straightforward, the computation of [C] needs considerable effort. The matrix [C] is not
unique and its structure in terms of bandwidth, sparsity and computational effort is totally
dependent on the scheme adopted in its generation. Recently, compatibility conditions have
been classified and general procedures to generate them with optimum banded structure
(Nagabhushanam & Patnaik 1989) are being developed, which helps the use of efficient
solution techniques for solving IFM governing equation.

3. Nonlinear analysis by integrated force method

Nonlinear structural behaviour is captured at the element level and the complete structure
governing equations are established by enforcing equilibrium of forces and compatibility of
displacements at the nodes. In the following, a total Lagrangian is used to develop elemental
equilibrium matrix �Be� and elemental flexibility matrix �Ge� for performing nonlinear
analysis.

Displacement fug and stress frg within the element are approximated in terms of two
sets of independent variables as

fug � �Nu�fueg;
frg � �Nr�fFeg;

�9�

where fueg and fFeg are the nodal displacement vector and the generalised force para-
meter vector of the element respectively; �Nu� and �Nr� are the matrices containing inter-
polation functions for displacement and stress fields respectively within the element.

The components of Green's strain vector feg in terms of the undeformed Lagrangian co-
ordinates are given by the linear component feLg and the nonlinear the component feNLg
which can be written as

feg � feLg � feNLg: �10�
Now feLg can be expressed as

feLg � �D1
f ��Nu�fueg � �Bs

L�fueg; �11�
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where �D1
f � is a differential operator matrix and �Bs

L� � �D1
f ��Nu�, and feNLg can be

expressed as

feNLg � 1
2
�Ah�fhg; �12�

where fhg is the displacement gradient vector and �Ah� contains the derivatives of the
displacements. Further fhg can be expressed as

fhg � �D2
f ��Nu�fueg � �G�fueg; �13�

where �D2
f � is a differential operator matrix and �G� � �D2

f ��Nu�.
Variation of strain is given by

fdeg � fdeLg � fdeNLg;
fdeg � ��Bs

L�fdueg � 1
2
�Ah��G�fdueg � 1

2
�dAh��G�fueg�;

fdeg � ��Bs
L� � �Ah��G��fdueg;

�14�

since �dAh�fhg � �Ah�fdhg. Expressing �Ah��G� � �Bs
NL�, we can write (14) as

fdeg � �Bs
L � Bs

NL�fdueg: �15�
If f�pg denotes the surface forces per unit area of the deformed body �A, � the mass density
and fqg the body forces per unit mass, the Lagrangian virtual work expression over the
volume V for the virtual displacements f dug can be written asZ

V

fdegT� dV �
Z

V

�fdugTfqg dV �
Z

A

fdugT d�A

dA
f�pg

� �
dA: �16�

Substituting (9) and (15) in (16) leads to

fduegT

Z
V

�Bs
L � Bs

NL�T �Nr�fFeg dV

� fduegT

Z
V

��Nu�Tfqg dV �
Z

A

�Nu�T d�A

dA
f�pg

� �
dA

� �
: �17�

Let the right hand side of (17) be represented by fPeg which is a vector of equivalent nodal
forces due to the body forces fqg and surface tractions f�pg. Then the nonlinear equilibrium
equation becomes:Z

V

�Bs
L � Bs

NL�T �Nr�fFeg dV � fPeg: �18�

The unbalanced load  will be

fwg �
Z

V

�Bs
L � Bs

NL�T �Nr�fFeg dV ÿ fPeg;
fwg � �Be�fFeg ÿ fPeg;

�19�

where �Be� is the elemental equilibrium matrix and can be expressed as

�Be� �
Z

V

�Bs
L � Bs

NL�T �Nr� dV : �20�
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The relation between the elemental stress parameters of the element and the generalized
deformations fbeg are established through the complementary energy principle.

Considering complimentary strain energy, we can writeZ
V

fd�gTf�g dV � fdFegTf�eg; �21�

where fbeg represents the generalised element deformation vector. With stress strain
relationship feg � �����freg where ����� is the compliance matrix, (21) can be written asZ

V

fdFegT �N��T ����Nr�fFeg dV � fdFegTfbeg;

fdFegT

Z
V

�Nr�T ������Nr�fFeg dV ÿ fbeg
� �

� 0:

�22�

Equation (22) leads to

fbeg � �Ge�fFg; �23�
where

�Ge� �
Z

V

�Nr�T ������Nr� dV : �24�

The developed �Be� and �Ge� are utilized to generate [B], [G] and [C] of the structure.
Subsequently the IFM's governing equation for a nonlinear structure becomes

w�a� � �B�
�C��G�
� �

fFg ÿ P

0

� �
; �25�

where (a) corresponds to the deformed geometry of the structures at the given load step.
The solution to this equation is achieved using the Newton-Raphson method with load

increments. Iterations within a load increment will continue until the residual load  
satisfies the convergence criteria.

4. Development of elemental matrices

For analysing nonlinear beam bending problems, three different types of element formula-
tions are considered. They are the classical two-node 2D beam element (BEAM2D), eight-
node rectangular isoparametric element (ISPM08-13) and six-node paralinear isoparametric
element (ISPM06-9).

The idealized BEAM2D element is shown in figure 1a. The displacement shape func-
tions are Hermite polynomials, which are

u
V

� �
� H1 0 0 H4 0 0

0 H2 leH3 0 H5 leH6

� �
fung �26�

where Hi are Hermite polynomials expressed in normalized coordinate �, (� � x=le),

H1 � 1ÿ �; H4 � �;
H2 � 1ÿ 3�2 � 2�3; H5 � 3�2 ÿ 2�3;
H3 � � ÿ 2�2 � �3 H6 � ÿ� � �3:
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Axial stress at any point �; � of the beam can be written as

frg � �Nr�fFeg � �1 � ���
F1

F2

F3

8<:
9=;; �27�

where F1, F2 and F3 are the force parameters of the beam element.
For the eight-node isoparametric element (ISPM08-13) seen in figure 1b, the shape

functions used for corner nodes are

Ni � 1
4
�1� �0��1� �0���0 � �0 ÿ 1�; �28�

and for mid-side nodes

Ni � �
2
i

2
�1� �0��1ÿ �2� � �

2
i

2
�1� �0��1ÿ �2�; �29�

where �0 � ��i and �0 � ��i.
The stress field within the element is assumed in terms of 13 independent force

parameters �1, �2 � � ��13 as given below.

�x � �1 � �2y� �6x� �8x2 � �10y2 ÿ 2�13xy;

�y � �3 � �4x� �7y� �9x2 � �11y2 ÿ 2�12xy;

�xy � �5 ÿ �6yÿ �7xÿ 2��10 � �11�xy� �12x2 � �13y2:

�30�

The assumed stress field satisfies the stress equilibrium within the element.

Figure 1. Elements developed for nonlinear analysis using IFM: (a) BEAM2D
element, (b) ISPM08-13 element, (c) ISPM06-9 element.
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For the six-node paralinear isoparametric element (ISPM06-9) (fig 1c), the shape
functions used for corner nodes are

Ni � 1
4
��0 � �2��1� �0�; �31�

and for mid-side nodes

Ni � 1
2
�1ÿ �2��1� �0�; �32�

where �0 � ��i and �0 � ��i.
A stress distribution with nine independent force parameters �1, �2 � � � �9 that satisfies

the homogeneous stress equilibrium conditions within the element is considered as follows.

�x � �1 � �2y� �6xÿ 2�8xy;

�y � �3 � �4x� �7yÿ 2�9xy;

�xy � �5 ÿ �6yÿ �7x� �8x2 � �9x2:

�33�

The elemental �Be� and �Ge� are calculated by considering (20) and (24) respectively. The
Gaussian quadrature technique is utilized to perform the integration in these equations.

5. Results

A number of highly nonlinear structures are considered and each one of them is solved
using the proposed elements. The results obtained by IFM are compared either with
analytical solutions or with those of the displacement method to establish the viability of
effectively utilizing IFM for nonlinear structural analysis.

5:1 Cantilever beam with end moment

The highly nonlinear behaviour of a cantilever beam with end moment was analysed by
Surana (1983) using the displacement method with curved beam elements with mid-node.
The same cantilever beam, whose geometry, structural details and loading is shown in
figure 2, is analysed by IFM. The cantilever beam is subjected to an end moment M � mf
( f is varied from 0 to 2) and the total moment is applied in 20 equal increments. At each
load increment, equilibrium iterations are performed until convergence is within the
tolerance limits. The tolerance limit is fixed such that the successive displacements of any
two iterations should not vary by more than 0:0001%.

The same structure which is idealised as above is also analysed by the displacement
method (DM) using straight beam elements. It was observed that the displacement method
generally took 5 iterations at each load step, while the IFM requires only two iterations.
Thus IFM seems to have faster convergence when compared to the displacement method for
this problem. Figure 3 shows load factor f vs tip deflections �x and �y, which are from those
obtained by IFM, and the displacement method (DM), and those given by Surana (1983).
The results from all three methods are very close to one another.

The results of the deformed geometry of the beam obtained by IFM are compared with
the results of Surana (1983) as the load factor f is increased and they are shown in figure 4.
It can be seen that there is close agreement between them for all load factors. Thus IFM,
when extended to perform nonlinear analysis, is able to predict the nonlinear behaviour of
load vs deflections as effectively as the displacement method.
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5:2 Plane stress cantilever beam

A plane stress cantilever beam with a concentrated load applied at the free end as shown in
figure 5 is modelled with five 8-node isoparametric elements. The cantilever beam is
analysed using IFM and compared with the results of displacement method (Nayak 1980).

Figure 2. Cantilever beam with the end moment, finite element model with beam
elements.

Figure 3. Load-deflection plots for cantilever beam with end moment.
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The deflections at the load application �x and �y are plotted against the non-dimensional
load factor f �PL2�1ÿ �2�=EI� for � � 0:0 and 0:3 and are shown in figure 6. The curves
show that the results predicted by the IFM and the displacement method are extremely
close to each other.

5:3 Portal frame

A portal frame is considered, whose geometry, structural details, and loading are given in
figure 7. Half of the structure is considered and is idealised with sixteen elements. The
structure is analysed using IFM with BEAM2D, ISPM08-13 and ISPM06-9 elements. These
results are compared with those obtained by the displacement method using curved beam
elements given by Surana (1983), and are shown in figures 8 and 9. Figure 8 shows the
behaviour of non-dimensional horizontal displacement �B

H=L at point B against the non-

Figure 4. Deformed shapes of the cantilever beam with end moment.

Figure 5. Cantilever beam with concentrated load, modelled with ISPM08-13
elements.
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Figure 6. Load-deflection plots for cantilever beam with concentrated tip load.

Figure 7. Portal frame with symmetric loading.
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Figure 8. Load-deflection characteristics of the portal frame.

Figure 9. Load-deflection characteristics of the portal frame.
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dimensional load parameter � � PL2=EI. The non-dimensional horizontal displacement at
point B, �B

H=L, is plotted against the non-dimensional vertical displacement �C
V=L at point C

and is shown in figure 9. Among the results of various elements, results of ISPM08-13 are
close to the results of the displacement method with curved beam elements.

The deformed shape of the portal frame as computed by IFM using ISPM08-13 for
various load factors is shown in figure 10. It clearly exposes the highly nonlinear behaviour
of the portal frame for the load range considered.

6. Conclusions

Application of integrated force method for analysing nonlinear structures is presented for
the first time. A general formulation to develop the elemental equilibrium and flexibility
matrices is described. Three representative highly nonlinear beam-type structures are
considered and they are analysed using beam and plane stress elements. The results of the
integrated force method are compared with those of the displacement method. It shows that
the integrated force method can be successfully applied to highly nonlinear structures and
is also a viable alternative method for the currently widely used displacement method.
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