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Abstract. This paper presents a completeness result for a first-order
interval temporal logic, called Neighbourhood Logic (NL) which has two
neighbourhood modalities. NL can support the specification of liveness
and fairness properties of computing systems as well as formalisation of
many concepts of real analysis. These two modalities are also adequate
in the sense that they can derive other important unary and binary
modalities of interval temporal logic. We prove the completeness result
for NL by giving a Kripke model semantics and then mapping the Kripke
models to the interval models for NL.

1 Introduction

In many applications, digital systems reacting with environment and events have
to produce an output before a certain delay has elapsed. Time requirements
– both qualitative as well as quantitative - have to be considered to reason
about such systems. Thus, for such purposes one has to consider a real-time
logic. Various such logics have been proposed. Some of these formalisms interpret
formulas over intervals of time [5,11,16,17,19]; notably among them are Interval
Temporal Logic (ITL) [11] and Duration Calculus (DC) [6,19]. ITL is a first-
order interval modal logic which uses a binary modal operator “_” which is
interpreted as the operation of “chopping” an interval into two parts. DC is an
extension of ITL in the sense that temporal variables are written in the form of
the integrals of “states”.

Since chop “_” is a contracting modality, ITL-based logics can succintly
express properties of the real-time systems, such as; “for all time intervals of
a given length, φ must be true”, or “if φ holds for a time interval, then there
is a sub-interval where ψ holds”. However, these logics cannot express liveness
properties, which depend on intervals lying outside the reference interval, like;
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“eventually there is an interval where φ is true, and “φ will hold infinitely often
in the future”.

Another limitation of these logics is that when they are used in the speci-
fication of hybrid systems the notions of real analysis such as limit, continuity
and differentiability cannot be suitably formalised in them. These notions are
neighbourhood properties of a point which cannot be defined in those logics.
Although an informal mathematical theory of calculus can be assumed as in
extended duration calculus [20], Hybrid Statecharts [10], Hybrid Automata [1]
and TLA+ [9], a formalization of real analysis may help in developing theorem
provers for supporting the design of hybrid systems.

In order to improve the expressiveness of ITL, expanding modalities have
been used. Venema [17] gives a complete axiomatization of a propositional cal-
culus with three binary modalities; in addition to chop (designated as C) it has
modalities T and D, which can represent properties outside the interval. Some
of the axioms and rules in it are quite complicated. Other expanding modalities
which are unary have been considered in Halpern and Shoham [5]. But many
notions of real analysis cannot be formalised without first-order quantifiers.

In [18], Zhou and Hansen proposed a first-order interval logic called Neigh-
bourhood Logic (NL) which has provisions for specifying liveness and fairness
properties as well as formalising some notions in real analysis. This logic has
two expanding modalities 3l and 3r, called the left and right neighbourhood
modality respectively. These modalities refer to some past and future intervals
of time respectively with respect to the original interval of time being observed.

Although, it is not very hard to see that the Propositional NL is complete
with respect to Kripke models, it seems to be quite inadequate to derive the
modalities considered in [5,17] (but not conversely). Moreover, Propositional
NL forms a fragment of the complete logic proposed by Venema in [16]. Nev-
ertheless, the adequacy of the neighbourhood modalities can be established by
deriving the other unary and binary modalities of [5] in a first-order logic of
the neighbourhood modalities and the interval length (cf.[18]). Thus first-order
Neighbourhood Logic seems to have more expressive power than those of [4,5,17]
with a minimum number of modalities.

This paper presents the syntax and semantics of first-order Neighbourhood
Logic and then establishes a completeness result. First, we establish a complete-
ness theorem for the NL formulas in the Kripke model (or possible world model).
Then we map the Kripke model to the interval model and prove the complete-
ness of NL in the interval model. Dutertre [4] has proved a similar completeness
result for ITL with chop modality. Both follow the approach suggested by [8,17].

2 Neighbourhood Logic (NL)

2.1 Syntax of NL

A languageL for NL consists of an infinite collection of global variables, V =̂ {x, y,
z, . . .} and also an infinite collection of temporal variables, T =̂ {`, v1, v2, . . .},



where ` is a special symbol which will denote the length of an interval. “`”
will depict the “natural” properties of length in the axioms of the logic to be
introduced later. In addition, the language contains an infinite set of global func-
tion symbols F and global predicate symbols H. These symbols are called global
because their meaning will be independent of time. With each of the function
and predicate symbols is associated an arity n ≥ 0. Function symbols of arity
0 will be called constants. Predicate symbols of arity 0 are propositions which
include two Boolean symbols true and false. F includes the symbols +,− and
H includes =,≥ etc. There is also an infinite set of temporal propositional let-
ters P =̂ {X,Y, . . .} which will be interpreted as Boolean-valued functions on
intervals. The vocabulary also consists of propositional connectives ¬ and ∨,
the existential quantifier ∃ and the left neighbourhood modality 3l and the right
neighbourhood modality 3r. The other usual connectives ∧,⇒,⇔ as well as the
universal quantifier ∀ are introduced as abbreviations.
The terms denoted as θ, θi, are defined by the following abstract syntax:
θ ::= x | ` | v | fn(θ1, . . . , θn); x ∈ V, v ∈ T, f ∈ F.
The formulas, denoted as φ, ψ, are defined by the following abstract syntax:
φ ::= X | Gn(θ1, . . . , θn) | ¬φ | φ ∨ ψ | (∃x)φ | 3lφ | 3rφ; x ∈ V, X ∈
P, G ∈ H.

A term is global or rigid, if it does not contain any temporal variables. A
formula is global or rigid, if it does not contain any temporal variables, any
temporal propositional letters, or any neighbourhood modalities.

2.2 Semantics of NL

We fix our domain to be a non-empty set ID (containing the constant symbol 0)
which will be the underlying representation of time as well as lengths of intervals.
Traditional semantics, however, distinguishes between temporal domain T (which
is generally a totally ordered set) and duration domain ID which represents
durations of time intervals. The duration domain satisfies certain constraints
since their elements are supposed to measure “lengths” of time intervals(cf.[4]).
Here, for simplicity, we take the time domain to be the same as the duration
domain. As in [4], we want ID to have certain properties which are specified by
the following axioms.
D 1 Axioms for =:
The standard axioms for = are assumed (cf. [15]).
D 2 Axiom for + :
1. x+ 0 = x. 3. x+ (y + z) = (x+ y) + z.
2. x+ y = y + x. 4. (x+ y = x+ z) ⇒ y = z.
D 3 Axioms for ≥ :
1. 0 ≥ 0. 3. x ≥ y ⇔ ∃z ≥ 0.(x = y + z).
2. x ≥ 0 ∧ y ≥ 0 ⇒ x+ y ≥ 0. 4. ¬(x ≥ y) ⇔ (y > x),

where we write y > x if (y ≥ x) ∧ (y 6= x).
D 4 Axioms for − :
1. x− y = z ⇔ x = y + z.



Clearly, IR (the reals), Q (the rationals) and ZZ (the integers) are examples of
domains which satisfy the above axioms. From the above axioms it can be shown
that (ID,+) is a commutative group with 0 as the additive identity and −y as
the additive inverse of y.
The time domain is ID and the set of all intervals II is given by:

II =̂ {[a, b] : a, b ∈ ID and (b ≥ a)},
where the interval [a, b] is defined as

[a, b] =̂ {x ∈ ID : b ≥ x ≥ a}.
The global variables are assigned meaning through a valuation or value assign-
ment ν : V → ID. Given an interval [a, b] ∈ II the meaning of the temporal
variables, propositional letters, function and predicate symbols is given by an
interpretation function I such that,
1. I(0, [a, b]) = 0,
2. I(`, [a, b]) = b− a,
3. I(v, [a, b]) ∈ ID; for v ∈ T,
4. I(X, [a, b]) ∈ {tt,ff} for X ∈ P,
5. I(f, [a, b]) = f, for an n-ary function f ∈ F,

where f : IDn → ID is any standard interpretation of f ,
6. I(G, [a, b]) = G, for an n-ary predicate symbol G ∈ H,

where G : IDn → {tt,ff} is any standard interpretation of G.
Note that “+′′ and “−′′ are interpreted as the associated binary operations on
ID.
Given a valuation ν, the terms are interpreted in the usual way by induction on
the length of terms [15].
We shall call the pair M =̂〈ID, I〉 an interval model. Let M, ν, [a, b] |= A denote
that the formula A is satisfied in the interval [a, b] (also called the reference
interval) with respect to the model M and valuation ν. Satisfiability can then
be defined by induction on the formulas in a standard way [15,8]. We only state
the cases for formulas with modalities 3l and 3r.
1. M, ν, [a, b] |= 3lA iff there exists c, a ≥ c such that M, ν, [c, a] |= A.
2. M, ν, [a, b] |= 3rA iff there exists d, d ≥ b such that M, ν, [b, d] |= A.

We say that A is valid, written as |= A, iff for any model M, any valuation ν
and interval [a, b], M, ν, [a, b] |= A. Also A is satisfiable iff for some model M,
valuation ν, and some interval [a, b], M, ν, [a, b] |= A.

3 The Proof System for NL

In the following set of axioms and rules (as well as elsewhere), 3(2) can be
instantiated by either3l or 3r (2l or 2r respectively). The following abbreviation
will be adopted.

−
3 =̂

{
3r, if 3 = 3l

3l, if 3 = 3r

2 =̂ ¬3¬
−
2 =̂ ¬ −

3 ¬
3

c =̂
−
3 3



Axioms
A1 Global formulas are not connected to intervals.

3A ⇒ A, provided A is a global formula.
A2 Interval length is non-negative.

` ≥ 0
A3 Neighbourhood can be of arbitrary length.

x ≥ 0 ⇒ 3(` = x)
A4 Neighbourhood modalities can be distributed over disjunction and existen-

tial quantifier.
3(A ∨B) ⇒ 3A ∨ 3B
3∃x.A ⇒ ∃x.3A

(The second part of A4 implies that the analogue of Barcan Formula is true.)
A5 A left (right) neighbourhood coincides with any other left (right) neighbour-

hood provided they have the same length. In other words,neighbourhood is
determined by its length.

3((` = x) ∧A) ⇒ 2((` = x) ⇒ A)
A6 Left (right) neighbourhoods of an interval always start at the same point.

3
−
3 A ⇒ 2

−
3 A

A7 Left (right) neighbourhood of the ending (beginning) point of an interval is
the interval itself, if it has the same length as the interval.

(` = x) ⇒ (A⇔ 3
c((` = x) ∧A))

A8 Two consecutive left (right) expansions can be replaced by a single left
(right) expansion, if the third expansion has a length of the sum of the first
two.

((x ≥ 0)∧(y ≥ 0)) ⇒ (3((` = x)∧3((` = y)∧3A)) ⇔ 3((` = x+y)∧3A))

Rule schemas
M (Monotonicity) If φ ⇒ ψ then 3φ ⇒ 3ψ.
N (Necessity) If φ then 2φ.
MP (Modus Ponens) If φ and φ ⇒ ψ then ψ.
G (Generalization) If φ then (∀x)φ.
The proof system also contains axioms D1–D4 and axioms of propositional

logic and first-order predicate logic. They can be taken as any complete system
for first-order logic except for some restrictions on the instantiation of quantified
formulas. A term θ is called free for x in φ if x does not occur freely in φ within
a scope of ∃y or ∀y, where y is any variable occurring in θ. We also adopt the
following axioms:

∀x.φ(x) ⇒ φ(θ)

φ(θ) ⇒ ∃x.φ(x)

(
if either θ is free for x in φ(x) and θ is rigid
or θ is free for x in φ(x) and φ(x) is modality free.

)

A proof of an NL formula A is a finite sequence of NL formulas A1, . . . , An, where
An is A, and each Ai is either an instance of one of the axiom schemas mentioned



above or obtained by applying one of the inference rules, also mentioned above,
to the previous members of the sequence. We write ` A to mean that there exists
a proof of A in NL and we say that A is a theorem in NL (or A is provable in
NL).

The following is easy to check by induction on the length of proof.
Theorem 1 ((Soundness in NL)). An NL formula which can be proved in
the calculus must be valid (in any interval model).

4 Kripke Completeness

Kripke Model A Kripke model K for NL is a quintuple 〈W,Rl, Rr, ID, I〉,
where

– W is a non-empty set of possible worlds,
– Rl and Rr are binary relations on W , called accessibility relations,
– ID is a non-empty set, called the domain,
– I is an interpretation function which assigns to each symbol s and world w,

an interpretation I(s, w) satisfying the following,
1. If s is an n-ary function symbol, then I(s, w) is a function IDn → ID.
2. If s is an n-ary predicate symbol, then I(s, w) is a function IDn → {tt,ff}.

3. If s is a constant or a temporal variable, then I(s, w) ∈ ID.
4. If s is a temporal propositional letter, then I(s, w) ∈ {tt,ff}.
5. If s is a global symbol, then I(s, w1) = I(s, w2), for all worlds w1, w2 ∈
W i.e., its interpretation is the same in all worlds.

Semantics Given a Kripke model K, each term t is assigned a meaning on
ID in each world of W . Given an interpretation I, a valuation ν and a world w;
the semantics of a term is defined by induction [2] on its length in a standard
way and is written as Iν(t, w). For a rigid term, the interpretation of the term
is the same in all worlds.

Now we describe the semantics of the formulas. We shall write K, ν, w |= A
to denote that a formula A is satisfied in the world w under the Kripke model
K and valuation ν. It can be defined by induction on formulas in a standard
way with Rl and Rr playing the role similar to binary accessibility relation in
ordinary modal logic [8]. We illustrate the cases for modal operators.

1. K, ν, w |= 3lA iff there exists w′ ∈ W such that Rl(w,w′) and K, ν, w′ |= A
2. K, ν, w |= 3rA iff there exists w′ ∈W such that Rr(w,w′) and K, ν, w′ |= A

We say that K satisfies a formula A (or A has a Kripke model K), if there are
a world w and a valuation ν such that K, ν, w |= A. An NL formula A is valid
in a Kripke model K if for any valuation ν and world w, K, ν, w |= A. An NL
formula A is valid if A is valid in every Kripke model.

A set Γ of sentences is consistent [8] if there does not exist any finite subset
{A1, . . . , An} of Γ such that ` ¬(A1 ∧ . . . ∧ An). If, in addition, there does



not exist any consistent set Γ ′ such that Γ ′ ⊃ Γ , then Γ is called a maximal
consistent set (mcs ).

Let IB be a countably infinite set of symbols not occurring in the language
L. Let L+ be the language obtained by adding to L all the symbols in IB as
rigid constants. Denote the extended proof system by NL+.

A set Γ of sentences is said to have witnesses in IB if for every sentence in Γ
of the form ∃x.φ(x), there exists a constant b ∈ IB such that φ(b) is in Γ .

LetQ be a sentence not provable in NL. Suppose Γ = {¬Q}. It is easy to show
that Γ is consistent. Enumerating the sentences of L+ and adding appropriate
sentences to Γ in stages, one can obtain a mcs Γ ∗ ⊇ Γ in L+ such that Γ ∗ has
a witness in IB (cf. [4]). Let Σ be the set of rigid formulas of Γ ∗.

We shall now construct the desired Kripke model KΓ = 〈W,Rl, Rr, ID, I〉.
Let

W = {∆ : ∆ is a mcs with witnesses in IB and ∆ ⊇ Σ}.
W is non-empty since Γ ∗ ∈W . The accessibility relations Rl, Rr are defined

as follows.
Rl(∆1, ∆2)

def⇔ 3l∆2 ⊆ ∆1 and Rr(∆1, ∆2)
def⇔ 3r∆2 ⊆ ∆1.

The domain ID is defined as follows. In IB define a relation ≡ by
a ≡ b iff a = b ∈ Σ.

The axioms D 1 for equality show that ≡ is an equivalence relation on IB.
Let

ID = {[b] : b ∈ IB}
be the set of equivalence classes, where [a] denotes the equivalence class contain-
ing a.

The interpretation function I is defined as follows.

1. If v is a temporal variable, then I(v,∆) = [a] iff v = a ∈ ∆
2. If a is a constant, then I(a,∆) = [c] iff a = c ∈ ∆
3. If f is an n-ary function symbol, then

I(f,∆)([b1], . . . , [bn]) = [c] iff f(b1, . . . , bn) = c ∈ ∆.
4. If G is an n-ary predicate symbol, then

I(G,∆)([b1], . . . , [bn]) = tt iff G(b1, . . . , bn) ∈ ∆
5. If X is a propositional letter, then I(X,∆) = tt iff X ∈ ∆.

Lemma 1 ((Truth Lemma)). For any formula A(x1, . . . , xn), where the free
variables in A are among x1, . . . , xn, for any world ∆ ∈W and valuation ν,
KΓ , ν,∆ |= A(x1, . . . , xn) iff A(b1, . . . , bn) ∈ ∆, where ν(xi) = [bi]; 1 ≤ i ≤ n.

Since ¬Q ∈ Γ ∗; by Lemma 1, KΓ , ν, Γ
∗ |= ¬Q for any valuation ν. Moreover, if

a sentence A is a theorem of NL then it is in Γ ∗ and so KΓ , ν, Γ
∗ |= A. Actually

it is not required to use all the axioms in the proof of Kripke completeness [2].

5 Completeness in Interval Models

We now translate the Kripke world to the interval models and prove a complete-
ness result in the interval models.



Consider the Kripke Model KΓ = 〈W,Rl, Rr, ID, I〉 such that KΓ , ν, Γ
∗ |=

¬Q, as build earlier. From this Kripke model through a sequence of steps, we
shall construct an interval model M = 〈ID∗, I∗〉 and an interval [a, b] such that
M, ν, [a, b] |= ¬Q, for any valuation ν.

Define ID∗ = ID. It is quite straightforward to check that ID∗ satisfies all
the axioms D 1 - D 4. Let ∆0 ∈ W such that ` = 0 ∈ ∆0 and 3l∆0 ⊆ Γ ∗.
Such a ∆0 exists (See [2]). Recall that ID is a set of equivalence classes (of rigid
constants added to L). From now on we shall not distinguish between a and
the equivalence class [a] containing a. Given an interval [a, b], a, b ∈ ID, we shall
construct a world ∆[a,b] as described below.
Construction of ∆[a,b] We think of the world∆0 as representing 0. We consider
the following cases.
Case 1 a ≥ 0.
Let ∆1 be a world in W such that ` = a ∈ ∆1 and 3r(∆1) ⊆ ∆0. Then ∆[a,b]

is a world such that (` = b− a) ∈ ∆[a,b] and 3r(∆[a,b]) ⊆ ∆1.
The existence and uniqueness of such worlds can be established [2]. (Think of
∆1 as representing the interval [0, a] which is to the right of 0 represented by
∆0. Then ∆[a,b] represents the interval of length (b − a) to the right of ∆1; see
Figure 1.)
Case 2 a < 0.
Let ∆2, ∆3 ∈ W such that ` = −a ∈ ∆2 and 3l(∆2) ⊆ ∆0. Also, ` = 0 ∈
∆3 and 3l(∆3) ⊆ ∆2.
Then, ∆[a,b] is a world such that (` = b − a) ∈ ∆[a,b] and 3r(∆[a,b]) ⊆ ∆3.
Such a world ∆[a,b] can be uniquely found [2]. (Think of ∆2 as representing the
interval [−a, 0] which is to the left of 0 represented by ∆0. Also ∆3 represents
the point interval [−a,−a]. Then ∆[a,b] represents the interval of length (b − a)
to the right of ∆3; see Figure 1).
Now, define the function I∗ as, I∗(s, [a, b]) = I(s,∆[a,b]), for any symbol s.
From the definition of I it follows that I∗(`, [a, b]) = I(`,∆[a,b]) = b− a.

We now need the following lemma which can be proved by taking induction
on formulas (cf. [2]).

Lemma 2. For any interval [a, b], valuation ν and formula A
M, ν, [a, b] |= A iff K, ν,∆[a,b] |= A.

We have K, ν, Γ ∗ |= ¬Q. Now it can be shown that (see [2]) for some c ≥
0, Γ ∗ = ∆[0,c], for any valuation ν. Thus we have K, ν,∆[0,c] |= ¬Q, for all
valuation ν. Hence by Lemma 2, M, ν, [0, c] |= ¬Q, for any valuation ν. Thus
Q is not valid. Hence we have,

Theorem 2 ((Completeness of NL)). If a sentence Q is valid in interval
models, then Q is provable in NL.

6 Discussion

A complete axiomatic system for a first-order interval logic with two neighbour-
hood modalities has been presented in this paper. Barua and Zhou [2] have
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∆[a,b]
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∆[a,b]

Case 1: a ≥ 0

Case 2: a < 0

Fig. 1. Construction of ∆[a,b]

extended NL by introducing two more modalities in the upward and downward
directions and have proposed a two-dimensional neighbourhood logic NL2. They
have proved a completeness result in NL2 using the same construction. Their
work suggests that it may be possible to obtain a proof system of Neighbourhood
Logic in any dimension using the same technique. The logic of NL2 can be used
to specify the behaviour of the real-time systems where timeless computation is
taken into account [3].

In [14] NL has been extended to obtain a Duration Calculus (DC) where
temporal variables are expressed in the form of integrals (durations) of state
variables. It is interesting to note that the proof system of DC is relatively
complete, i.e. it is complete provided all valid NL formulas (with time domain
and valuation domain taken to be reals) are considered as axioms in the proof
system of DC (cf. [14]).

Applications of NL (and NL2) are being investigated. In [13] NL is combined
with a linear temporal logic to give a real-time semantics for an OCCAM-like
language, where timeless computation was assumed. Further NL is applied for
Interval Algebra in the area of Artificial Intelligence [12].
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