ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Origin of the sub-diffusive behavior and crossover from sub-diffusive to super-diffusive dynamics near a biological surface

Mukherjee, Arnab and Bagchi, Biman (2003) Origin of the sub-diffusive behavior and crossover from sub-diffusive to super-diffusive dynamics near a biological surface. In: PhysChemComm, 6 . pp. 28-31.

[img] PDF
DisplayArticleForFree.pdf - Published Version
Restricted to Registered users only

Download (253kB) | Request a copy
Official URL: http://www.rsc.org/delivery/_ArticleLinking/Displa...

Abstract

Diffusion of a tagged particle near a constraining biological surface is examined numerically by modeling the surface-water interaction by an effective potential. The effective potential is assumed to be given by an asymmetric double well constrained by a repulsive surface towards r --> 0 and unbound at large distances. The time and space dependent probability distribution P(r, t) of the underlying Smoluchowski equation is solved by using the Crank - Nicholson method. The mean square displacement shows a transition from sub-diffusive (exponent alpha approximate to 0.46) to a super-diffusive (exponent alpha approximate to 1.75) behavior with time and ultimately to diffusive dynamics. The decay of self intermediate scattering function (F-s(k, t)) is non-exponential in general and shows a power law behavior at the intermediate time. Such features have been observed in several recent computer simulation studies on the dynamics of water in proteins and micellar hydration shells. The present analysis provides a simple microscopic explanation for the transition from the sub-diffusivity and super-diffusivity. The super-diffusive behavior is due to escape from the well near the surface and the sub-diffusive behavior is due to the return of quasi-free molecules to form the bound state again, after the initial escape.

Item Type: Journal Article
Publication: PhysChemComm
Publisher: The Royal Society of Chemistry
Additional Information: Copyright of this article belongs to The Royal Society of Chemistry.
Department/Centre: Division of Chemical Sciences > Solid State & Structural Chemistry Unit
Date Deposited: 29 Oct 2009 08:45
Last Modified: 19 Sep 2010 04:55
URI: http://eprints.iisc.ac.in/id/eprint/17207

Actions (login required)

View Item View Item