A Graph Matching Based Integrated Scheduling Framework for Clustered
VLIW Processors

Rahul Nagpal and Y. N. Srikant
Department of Computer Science and Automation
Indian Institute of Science
Bangalore, India
{rahul,srikant} @csa.iisc.ernet.in

Abstract

Scheduling for clustered architectures involves spatial
concerns (where to schedule) as well as temporal concerns
(when to schedule) and various clustered VLIW configura-
tions, connectivity types, and inter-cluster communication
models present different performance trade-offs to a sched-
uler. The scheduler is responsible for resolving the conflict-
ing requirements of exploiting the parallelism offered by the
hardware and limiting the communication among clusters
to achieve better performance without stretching the over-
all schedule.

This paper proposes a generic graph matching based
framework that resolves the phase-ordering and fixed-
ordering problems associated with scheduling on a clus-
tered VLIW processor by simultaneously considering var-
ious scheduling alternatives of instructions. We observe ap-
proximately 16% and 28% improvement in the performance
over an earlier integrated scheme and a phase-decoupled
scheme respectively without extra code size penalty.

1 Introduction

Clustering has been proposed to overcome the scalabil-
ity problem associated with centralized VLIW architectures
and to make them suitable for use in embedded systems[7].
A clustered VLIW architecture has more than one register
file and connects only a subset of functional units to a reg-
ister file. Groups of small computation clusters can be fully
or partially connected using either a point-to-point network
or a bus-based network. Many inter-cluster communica-
tion (ICC) models such as send-receive model, extended
operand model, extended result model and broadcast model
are possible[20]. Clustering avoids area and power con-
sumption problems of centralized register file architectures
while retaining high clock speed. High clock speed can be
leveraged to get better performance but this demands high

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04)

1530-2016/04 $20.00 © 2004 1IEEE

quality partitioning of operations among clusters because
communication among clusters is limited and slow due to
technological constraints[13]. A compiler (scheduler) for
these architectures is responsible for binding operations to
resources in different clusters. Different clustered datap-
ath configurations, connectivity types, and ICC models pro-
posed in literature[20] present different architectural con-
straints and performance trade-offs to the scheduler. The
scheduler is required to resolve the conflicting goals of ex-
ploiting hardware parallelism as well as minimizing com-
munication among clusters.

The earlier proposals for scheduling clustered VLIW
architecture fall into two main categories namely phase-
decoupled approach and the integrated approach. The
phase-decoupled approach of scheduling[4][6][10] parti-
tions a DFG of instructions into clusters to reduce ICC
while approximately balancing the load among clusters.
The partitioned DFG is then scheduled using a traditional
list scheduler while adhering to earlier spatial decisions.
Proponents of this approach argue that a partitioner having
a global view of the DFG can perform a good job of reduc-
ing ICC. However pre-partitioning schemes in general suf-
fer from the phase-ordering problem. A spatial scheduler
has only an approximate knowledge (if any) of the usage of
cross-paths, functional units, and load on clusters. This in-
exact knowledge often leads to spatial decisions which may
unnecessarily constrain a temporal scheduler and produces
a suboptimal schedule. Though reducing ICC can be the
right approach while scheduling on a clustered VLIW pro-
cessor with only explicit move instructions for ICC, it may
not produce a good schedule in the case of other ICC mod-
els.

An integrated approach[15][16][12][9] towards schedul-
ing considers the instructions ready to be scheduled in a cy-
cle and the available clusters in some priority order. Prior-
ity orders for considering instructions are often based on
parameters such as mobility, scheduling alternatives and

nn

COMPUTER
SOCIETY

number of successors of an instruction. Priority orders for
considering clusters are based on parameters such as com-
munication cost of assignment and earliest possible sched-
ule time. An instruction is assigned a cluster either to re-
duce communication or to schedule it at the earliest. Usu-
ally scheduling alternatives for an instruction depend on re-
source and communication requirements of other instruc-
tions ready to be scheduled in the current cycle. Thus
schemes which follow a fixed statically determined order
for considering instructions and clusters suffer from what
we call as fixed-ordering problem and often end up produc-
ing suboptimal schedule in terms of performance, code size
or both. The proposed techniques in literature are also very
specific about a particular architectural configuration and
ICC model and demand major variations to achieve optimal
performance for a different model. Since design and vali-
dation of a scheduler is a complicated and time consuming
task, a generic scheduler which can accommodate architec-
ture specific constraints and can easily adapted to different
architectural variations is preferable.

This paper proposes a generic graph matching based
framework that resolves the phase-ordering and fixed-
ordering problems associated with scheduling a clustered
VLIW datapath by simultaneously considering various tem-
poral and spatial scheduling alternatives of instructions.
The framework considers the possible mapping of instruc-
tions to resources in different clusters and can easily ac-
commodate architecture specific constraints typically found
in spatial architectures. it requires only slight tweaking
of heuristics to get optimal performance for different clus-
tered VLIW configurations and ICC models. We have im-
plemented this framework for the state-of-art Texas instru-
ments TMS320C64X DSP architecture[18]. We evaluate
its effectiveness in improving performance. The rest of the
paper is organized as follows. Section 2 describes the tar-
get machine model. Section 3 contains our graph match-
ing based scheduling framework. Section 4 presents perfor-
mance statistics and a detailed evaluation based on experi-
mental data. In section 5, we briefly mention related work
in the area. We conclude in section 6. A detailed example
demonstrating the benefits of graph matching based sched-
uler can be found in associated technical report[14].

2 Problem Description
2.1 Machine Model

We consider a generic clustered machine model based
on recently proposed clustered architectures. In our ma-
chine model a clusters can be homogeneous having iden-
tical functional units and register file (like in VelociTI
architecture[18]) or heterogeneous with different cluster
having a different mix of functional units and register file
(like in HP Lx architecture[8]). The connectivity among

srcl
L1 src2
dst

srcl
S1 src2 re(':i Register file
dst A
srcl (A0 - A31)
MI §re2 ’(—(L(:
dst
srcl
DI src2 ’e(':i
dst
Crossfpa.lh\ |
dst ==
DA2 b2 sre2 (<= |
Register file

dst
M2 src2 ré(‘:f

srel B

st (BO - B31)
82 sre2 }<—Q(<:7

dst
L2 src2 -

Figure 1. TMS320C64X CPU Data Path

—= STIb

= STla

DAl

- LDIb

I LD

~—— LD2b
~— LD2b

= ST2b
= ST2a

clusters can be full or partial. The functional units can vary
in terms of the their operational and communicative capa-
bilities. An operation can be performed on more than one
resource and a resource can perform more than one kind of
operation. Some resources may also have some specialized
task delegated to them. The inter-cluster communication
model can vary. The architecture may even have a hybrid
communication model where some of the functional units
can communicate by snooping (reading) operands from the
register file of a different cluster without any extra delay (as
in VelociTI architecture[18]), while communication among
some of the clusters is possible only through an explicit MV
operation (as in HP Lx architecture[8]). Snooping capabil-
ities of functional units can be varied in terms of operands
a particular functional unit can snoop as well as particu-
lar clusters with which a function unit can communicate
using the snooping facility. Our machine model also in-
corporates architecture-specific constraints typically found
in clustered architectures. For example, some operations
can be performed only on some specialized resources due to
performance or correctness concerns. This machine model
enables us to design a generic and pragmatic framework
which can accommodate architecture-specific constraints
and can be easily adapted to a variety of clustered archi-
tectures differing in datapath configurations and/or commu-
nication models. Next we briefly explain the TMS320C64X
architecture, a production clustered processor having some
of the features of our machine model, which we have used
for practically evaluation of the framework.

TMS320C64X is a load-store RISC-style architecture
(refer to figure 1). The architecture follows a homogeneous
clustering philosophy and has two clusters (named A and
B). Each cluster has a 32x32 register file and 4 functional
units (named L, S, M, and D). In addition each data path
has a cross-path to read operands from the other file and the
address from one data path can be used to load and store val-
ues in the other data path. The ICC is restricted to two inter-

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04) nn

COMPUTER
1530-2016/04 $20.00 © 2004 IEEE SOCIETY

cluster move one in each direction per cycle. Functional
units can snoop their operands from other cluster without
any extra cost. However, there are some restrictions. L unit
can read either of its operands from the other cluster while
S, M, and D can read only their second source operand from
the other cluster. Most common operations are possible on
four to eight units and some units have specialized opera-
tions. Explicit move operation between two clusters can be
performed by blocking one of L, S, or D unit for one cy-
cle. All functional units have a single cycle latency and can
initiate a new instruction every cycle. Most of the C64x
instructions are of unit latency.

3 The Algorithm

input: A dataflow graph G
output: A triple (slot,cluster,unit) for each node in G
var
ready_list : List of nodes (instructions)
L=G.findScheduleLatencyForBase VLIW();
G.preProcess(L);
ready_list.init(G)
while (Ireadylist.is_.empty()) do
M=createMatchingGraph(readylist)
C=M.solveMinimumCostILP()
S=M.solveMaxNodelILP(C)
while (!S.is_empty()) do
E=S.remove()
(i,u,¢c) = (E.node, E.unit,E.cluster)

if (Ireject BasedOnCommunication AndM obility(i))

then
if explicit MvNeeded(i,u,c) then
scheduleExplicitMv(i,u,c)
end if
schedule instruction i on unit u in cluster ¢
end if
end while
readylist.update(G)
advanceCycle()
end while

Figure 2. Graph Matching based spatial and
temporal scheduling algorithm

An outline of graph matching based scheduler is given
in figure 2. The algorithm differs from the list schedul-
ing because it considers all possible scheduling alterna-
tives for all the instructions simultaneously and thus is able
to remove the sub-optimality due to possible interference
of scheduling alternatives of instructions. Graph match-
ing based scheduler creates a bipartite graph that consists
of a set of instruction nodes including all the instructions
in the ready list and a set of resource nodes including all
the resources in all the clusters. An edge connecting an
instruction node and a resource node represents a possible
scheduling alternative for the instruction. Each edge is as-

signed a cost determined by a cost function and the infor-
mation regarding usage of cross-paths. This is followed by
finding a minimal cost maximum node matching for this
graph. Instruction are considered for scheduling using the
alternative dictated by the selected match. To further reduce
the communication and extra code, some of the instructions
in the final match incurring high communication overheads
but possessing enough scheduling freedom can be delayed
for consideration in later cycles. Next we describe each of
these steps in detail in separate subsections

3.1 Measuring Instruction freedom

Freedom available in scheduling an instruction is defined
as the difference between the latest and the earliest time an
instruction can be scheduled without stretching the overall
schedule length. In general values of instructions freedom
are calculated assuming an infinite resource machine thus
ignoring all the resource constraints because the exact mea-
surement of of instruction freedom in a resource constrained
scenario is equivalent to finding an optimal schedule and
hence is NP-complete. However, this leads to a very pes-
simistic calculation of the freedom. For a better estima-
tion, we first schedule on a unclustered base VLIW proces-
sor with the same data path configuration but ignoring all
communication delays. Since in general the best schedule
that can be obtained on a clustered VLIW processor will
be of the same length as that of the base VLIW processor,
these freedom values incorporating resource constraints can
be used without any disadvantage while scheduling on the
clustered VLIW processors.

3.2 The Graph Construction

The graph construction process creates a bipartite match-
ing graph that consists of a set of instruction nodes includ-
ing all the instructions in the ready list and a set of resource
nodes including all the resources in all the clusters. An
instruction node is connected with a resource node if it is
possible to schedule the instruction on the resource. Each
edge is associated with a cost computed using the cost func-
tion and a communication vector which are described later.
There can be more than one edge between an instruction
and a resource depending on possible alternatives for cross-
cluster communication. We add all the edges explicitly to
the graph and later select the best alternative for the set
of instructions ready to be scheduled. To make the graph
complete, dummy edges are introduced between instruction
nodes and resource nodes that do not have even a single
edge between them. Dummy edges have infinite value and
zero entries for the cost and communication vector respec-
tively and are added to make it feasible to formulate the ILP.

3.3 ILP formulation of graph matching problem

Once all the possible scheduling alternatives for instruc-
tions ready to be scheduled in the current cycle are encoded

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04) nn

COMPUTER
1530-2016/04 $20.00 © 2004 IEEE SOCIETY

in the matching graph, we face the problem of finding a
feasible minimum cost match while scheduling as many in-
structions as possible in the current cycle. Since we are not
aware of any polynomial algorithm for solving the minimal
cost maximal matching with the additional cross-path usage
constraints, we formulate the problem as a sequence of two
ILP problems. The first ILP problem finds a feasible min-
imum cost match. Since different factors determining the
cost of binding are changed dynamically to make schedul-
ing decisions with precise information available at the time
of scheduling a set of instructions and the communication
cost factor also becomes accurate from one cycle to another
(as more and more parents of successors becomes sched-
uled), the cost of a real edge can be equal to sum of two
or more edges. The second ILP problem maximizes the no.
of non-dummy nodes matched for the minimum cost ob-
tained by solving the earlier problem. The formulation and
description of both ILP problems is as follows.

1 Set of ready instructions
i An individual instruction
R Set of all resources {L1,S1,D1,M1,L2,S2,D2,M2}
r An individual resources
Set of all alternative for scheduling instruction i
on resource r
a An individual alternative
M. Boolean Match variable for scheduling i on
r with alternative a

A(i,r)

a

Cr Cost of scheduling i on r with alternative a
zj.,, Cross path usage for pt" cross-path while scheduling

i on r with alternative a
N, Bandwidth of p*" cross-path

X Set of all cross-paths
Cmax Cost of dummy edge
C Cost of matching

NE Number of real edges in the matching

The objective function and feasibility constraints for the
first problem can be stated as follows:
1. Minimize the cost of final match
2. Every instruction is assigned to at most one resource
or no resource at all
3. All the resources are assigned some instruction or
other (guaranteed because the graph is complete)
4. Cross-path usage of the final match does not exceed
the cross-path bandwidth for any of the cross-path
formally

minimize
c= >

i€l, T€ER, a€A(3,r)

a a
M, * cj.

subject to:
viel Y Mg<1
a€A(i,r), TER

vrerR > ML=1
i€l, acA(i,r)
Vp € X > Mg * 28, <= N,
i€l, rER, a€A(i,r)
The objective function and feasibility constraints for the
second problem can be stated as follows:
1. Maximize the no of real edges in the final match
2. Total cost of final match is not more than minimum
cost of matching obtained by solving the first ILP
3. Every instruction is assigned to at most one resource
or no resource at all
4. All the resources are assigned some instruction or
other (guaranteed because the graph is complete)
5. Cross-path usage of the final match does not exceed
the cross-path bandwidth for any of the cross-path
formally
maximize
Nf = > M.

i€l, TER, a€A(i,r) Act, <Cmaxz

subject to:
Z Mj «c.. <C
i€l, r€ER, acA(i,r)

viel Y Mi<1
a€A(i,r), TER
vrerR > Mi=1
i€l, acA(i,r)
Vpe X > M 2%

irp <= NP
i€l, rER, ac€A(i,r)

3.4 The Cost Function

The cost function computes the cost of scheduling an in-
struction on a resource using a given communication alter-
native. Some important parameters deciding the cost are
mobility of the instruction, number and type of commu-
nication required, and uncovering factor of the instruction.
We define uncovering factor of an instruction as the num-
ber of instructions dependent on this instruction. As we
mentioned earlier, a better estimate of the mobility of in-
structions is obtained by first scheduling on a base VLIW
configuration since mobility of an instruction plays an im-
portant part in making scheduling decisions for the instruc-
tion. The mobility of an instruction is further reduced by
a * (current_time — V.ST) when an instruction is entered
into the ready list, where VST is the time of scheduling this
instruction on a base VLIW configuration. This reduction
helps in further refining the estimate of freedom available in
scheduling the instruction by taking into accounts the delay
introduced due to ICC in the partial schedule generated so
far. After each cycle the mobility of each instruction left
in the ready list is reduced by a factor 3 to reflect the ex-
act freedom left in scheduling each instruction in the next

nn

COMPUTER
SOCIETY

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04)
1530-2016/04 $20.00 © 2004 1IEEE

cycle. The communication cost models proposed here is
generic enough to handle different ICC models or even a
hybrid communication model where communication among
clusters is possible by combination of different ICC models.
The communication cost is computed by determining the
number and type of communication needed by a binding al-
ternative. Communication vector is composed of triple (ex-
plicit_mv,current_comm,future_comm) which encodes the
cross-cluster communication requirements of scheduling
the instruction for the alternative under consideration. ex-
plicit_mv take care of communications that can be due to
non-availability of snooping facility in a particular cycle or
in the architecture itself. current_comm stands for usage of
limited snooping capability if available in the hardware as
in the case of extended operand processors. This facility
can be used to reduce the code size and delays by reading
some operands directly from register file of other clusters.
Sfuture_comm is predicted by determining those successors
of the current instruction which have some of their parents
bound on a cluster different from one under consideration.

The final cost function combines together the cost due to
various factors. Since the problem has been formulated as
a minimum cost matching problem, alternatives with lesser
cost are given priority over alternatives with higher cost.
Communication factor is used to resolve resource conflict
among alternatives having same mobility, while the mobil-
ity is used to decide among alternatives having same com-
munication cost. Uncovering factor is given relatively little
contribution and is used for tie-breaking in the cost func-
tion proposed. The mobility of an instruction reduces from
one cycle to another to reflect the exact freedom available
in scheduling an instruction. As the available freedom in
scheduling an instruction reduces, its likelihood for selec-
tion in the final match increases. Once the mobility drops
below zero, instead of adding to the cost of an alternative
it starts reducing the cost. Thus for instruction which have
passed all the freedom, the communication cost become less
important and this further helps to increase their selection
possibility. As more and more parents of successors of an
instructions got scheduled, the communication cost factor
become more accurate and its become more likely that in-
struction will be scheduled in a cluster that reduces the need
for high future communication.

Figure 3 presents one set of values that we have used
during our experiments. The given values are for an archi-
tecture that has limited snooping facility available and thus
the current_comm is given half the cost of the explicit_mv
required. future_comm is also assigned a lesser cost opti-
mistically assuming that most of them will be accommo-
dated in the free-of-cost communication slot. Clustered ar-
chitectures mostly differ in the inter-cluster configuration
and ICC models used and the cost function can be tweaked
to reflect the associated trade-offs in the target architecture.

Thus the cost function is generic and require slight tweaking
for working with an architecture accommodating a different
ICC model.

comme_cost=(X*current_comm*+Y *future_comm+
Z*explicit-mv)/(MAX_COMM+1)
uncover_cost=(MAX_UNCOVER-uncovering_factor)/
(MAX_UNCOVER-MIN_UNCOVER+1)
mob_cost=mobility/(MAX_MOB+1)
cost=A*mob_cost + B*comm_cost+C*uncover_cost
where:
MAX_UNCOVER : Maximum of uncovering factors of
instructions in the ready list
MIN_UNCOVER : Minimum of uncovering factors of
instructions in the ready list
MAX_MOB : Maximum of mobilities of
instructions in the ready list
MAX_COMM : Maximum of communication
costs of any of the alternatives
Constants :
a=1.00, 5=1.00, X=0.5, Y=0.75, Z=1.00
A=1.00, B=1.00, C=0.10

Figure 3. Cost Function

3.5 Selective Rejection Mechanism

Since our algorithm schedules as many instructions as
possible in each cycle, some of the instructions with high
communication overheads may appear in the final match de-
pending on the resource and communication requirements
of other instructions being considered. For example if there
is only one ready instruction for a particular resource, the
algorithm will always decide to schedule it in the current
cycle even if it possesses enough freedom and has high
communication overheads. Thus in order to further reduce
the inter-cluster communication and associated overheads,
scheduling of instructions having high communication cost
and enough freedom can be deferred to future cycles in the
hope of scheduling them later using a less costly alterna-
tive. The uncovering factor can also be used to decide the
candidate to be rejected in a better way. Thus whereas the
ILP formulation is geared towards maximizing IPC, the se-
lective rejection mechanism prune the final ILP solution for
a cycle by selectively deferring instructions incurring high
communication cost and possessing enough mobility to ex-
plore the trade-offs in code size and performance.

4 Experimental Evaluation
4.1 Setup

We have used the SUIF compiler[2] along with MACH-
SUIF library[1] for our experimentation. We perform a
number of classical optimizations to get a highly opti-
mized intermediate representation. We generate code for
TMS320C64X][21]. Ours is a hand-crafted code generator

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04) nn

COMPUTER
1530-2016/04 $20.00 © 2004 IEEE SOCIETY

Table 1. Details of the Benchmark programs

Name Description Category L/N

AUTOCORR | auto correlation Filters 15

CORR 3x3 3x3 correlation with rounding Filters 11

FIR Finite impulse response filter Filters 12

FIRCX Complex Finite impulse response Filter | Filters .09

IIRCAS Cascaded biquad IIR FILTER Filters 18

GOURAUD Gouraud Shading Imaging 46

MAD Minimum Absolute Difference Imaging 17

QUANTIZE Matrix Quantization w/ Rounding Imaging 38

WAVELET 1D Wavelet Transform Imaging .16

IDCT IEEE 1180 Compliant IDCT Transform .09

FFT Fast fourier transform Transform 19

BITREV Bit Reversal Transform 31

VITERBI Viterbi v32 pstn trellis decoder Telecom 17

CONVDOC Convolution Decoder Telecom .20
Table 2. Legend

Legends | Meaning

GM Graph Matching without Selective Rejection

GS Graph Matching with Selective Rejection

UAS Unified Assign and Schedule

MWP Magnitude Weighted Predecessors Ordering

CWP Completion Weighted Predecessors Ordering

ucC UAS with CWP

UM UAS with MWP

LP Lapinskii pre-partitioning Algorithm

which is designed to take advantage of the specialized ad-
dressing modes of the architecture[19]. Code generation
is followed by a phase of peephole optimization and this
highly optimized code is passed to our scheduler. We have
interfaced our scheduler with the CPLEX ILP solver[3] to
handle the ILP formulation of the graph matching problem.
The scheduler annotates each instruction with the time-slot,
cluster, and functional unit information. Register alloca-
tion is performed on the scheduled code using priority based
graph coloring[5]. Any spill code that is generated is sched-
uled in separate cycles. After adding procedure prologue
and epilogue, we emit the scheduled assembly code in a
format acceptable to the TT assembler. After assembly and
linking, we carry out simulation of the generated code using
the TI simulator for the TMS320C64X architecture[21].
Table 1 summarizes the key characteristics of benchmark
programs that we have used for experimental evaluation of
our framework and a comparison with the pre-partitioning
algorithm[10] and UAS[16]. These benchmarks are mostly
unrolled inner loop kernels of MEDIABENCH][11], a rep-
resentative benchmark of multimedia and communication
applications and is specially designed for embedded appli-
cations. Table 1 also mentions the L/N ratio for each bench-

GOuRy BTR con T IRCas MAD MTerg, WA A0

w Y woc

Figure 4. Speedup as compared to GM

CoRy
x

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04)

1530-2016/04 $20.00 © 2004 1IEEE

=

%Inter-cluster copy ops

N s @ @

Qanr. GOURa BTRey CON. T Rcas MAD Wierg WAve AUto
2 w woc N ET CORR

AR @R FRCx TOCT

Figure 5. % Distribution of Explicit Inter-
cluster MV Instructions vs. Other Instruc-

tions
mark, where L is the critical path length and N is the number

of nodes in the DFG for each kernel. L/N ratio is an approx-
imate measure of the available ILP in the program. When
L/N is high, the partitioning algorithm has little room to im-
prove the schedule. Programs with low L/N exhibit enough
ILP for a careful partitioning and effective functional unit
binding algorithm to do well. The selected programs have
L/N ratios varying between .09 to .46.

4.2 Performance Statistics

Figures 4 depicts the speed-up of different algorithms as
compared to graph matching based scheduling algorithm.
We have experimented with two main heuristics for con-
sidering clusters namely completion weighted predecessors
(CWP) and magnitude weighted predecessors (MWP) as
proposed in the paper by Ozer et al.[16]. GM attains ap-
proximately 16.37%, 18.16%, and 28.51% improvement re-
spectively over UC, UM, and LP. GS could attain approxi-
mately 11.94%, 13.82%, and 24.87% improvement respec-
tively on the average on UC, UM, and LP. GS suffers a
slight performance degradation of about 4.97% on the aver-
age compared to GM. Figure 5 presents the percentage dis-
tribution of explicit inter-cluster MV instructions vs. other
instructions for different algorithms. On the average, the
percentage of explicit inter-cluster MVs vs other instruc-
tions is 4.21%, 4.84%, 7.20%, 7.08%, and 10.52% for GS,
LP, GM, UM, and UC respectively.

Graph matching based scheduler could attain significant
speed-up over UC, UM, and LP on program exhibiting high
ILP (low L/N). Moderate and marginal speed-up is observed
over programs with medium and little amount of ILP. This
further reinforces the fact that as the amount of parallelism
available in the program increases, the optimal schedule
length is dictated by the resource constraints and effective
partitioning and functional unit binding become more im-
portant. The graph matching based scheduler performs best
in terms of execution time. However, it introduces compar-
atively more explicit MV operation. GS reduces the no. of
explicit MV operation with some performance degradation.
GS and LP perform better than other algorithms in terms
of extra code added. LP having a global view of DFG and
tending to reduce ICC incurs less code size penalty. GM is

un@

COMPUTER
SOCIETY

better than UM and UC and UC performs worse of all.
4.3 Performance Evaluation

As mentioned earlier we consider a generic machine
model where resources vary in terms of their operational
and communicative capabilities and ICC facility is a func-
tion of a resource rather than that of communicating clus-
ters. On such a model, the resource and communication
constraints are tightly coupled and are precisely known
only while scheduling. Thus, the pre-partitioning algo-
rithms trying to balance the load based on an approximate
(or no) knowledge of the above facts and tending to re-
duce inter-cluster communication make spatial decisions
which artificially constrain the temporal scheduler in the
later phase. These algorithms thus suffer from the the well
known phase-ordering problem. From experimental results,
it is evident that this effect becomes prominent as the avail-
able ILP in the program increases. Though these algo-
rithms may able to reduce the inter-cluster communication
by working on a global view of the DFG, we observe that it
is often done at the cost of performance.

UAS integrates cluster assignment into the list schedul-
ing algorithm and shows improved performance over phase
decoupled scheduling approaches, Ozer et al. have pro-
posed many orders for considering clusters. However, the
paper by Ozer et al.[16] does not propose any particular or-
der for considering instructions in the ready queue. How-
ever, the order in which instructions are considered for
scheduling has an impact on the final schedule. The inte-
grated algorithms proposed earlier follow a fixed order for
considering instructions and clusters and thus these algo-
rithm suffer from the fixed-ordering problem. Earlier inte-
grated algorithms in general and UAS in particular do not
consider any future communication that may arise due to a
binding and this may lead to a stretched schedule because
of more communication than what the available bandwidth
can accommodate in a cycle and hence more number of ex-
plicit move operations. These are the reasons why UAS
suffers from performance and code size penalty. Another
drawback of UAS is due to the fact that it does not consider
functional unit binding. However, effective functional unit
binding is important in the case of the machine model under
consideration because resources vary in their operational
and communicative capabilities and resource and commu-
nication constraints are tightly coupled.

GM improves over earlier integrated algorithms by con-
sidering all the possible scheduling alternatives obtained by
varying communication options, spatial locations, and re-
source usage simultaneously instead of following a fixed
order. GM resolves fixed-ordering problem by simultane-
ously selecting among scheduling alternatives of instruc-
tions with an aid of cost function (composed of various dy-
namically varying factors) while exploiting the communica-

tion facility and parallelism offered by the hardware. Since
GM schedules as many instructions as possible in each cy-
cle, some of the instructions with high communication over-
heads may appear in the final match depending on the re-
source and communication requirements of other instruc-
tions being considered. In order to further reduce the inter-
cluster communication and extra code added, GS incorpo-
rates selective rejection mechanism to defer the scheduling
of instructions having high communication cost and enough
freedom to future cycles in the hope of scheduling them
later using a less costly alternative.

5 Earlier Work

Integrated scheduling is described in Ozer[16],
Leupers[12], and Kailas[9] while the phase decou-
pled schemes are due to Gonzalez[4], Desoli[6] and
Lapinskii[10]. In what follows, we briefly describe propos-
als due to Lapinskii et al.[10] and Ozer et al.[16] which we
have used for comparison with our framework.

Ozer et al.[16] have proposed an algorithm called
unified-assign-and-schedule (UAS). UAS extends the list
scheduling algorithm with a cluster assignment decision
while scheduling. After picking the highest priority node,
it considers clusters in some priority order and checks if
the operation can be scheduled in a cluster along with any
communication needed due to this binding. They have pro-
posed various ways of ordering clusters for consideration
such as no ordering, random ordering, magnitude weighted
predecessors (MWP), and completion weighted predeces-
sors (CWP). MWP ordering considers no of flow-dependent
predecessors assigned to each cluster for operation under
consideration. The instruction can be assigned to a cluster
having the majority of predecessors. CWP ordering assigns
each cluster a latest ready time for operation under consid-
eration depending upon the cycle in which the predecessor
operations produce the result. The clusters which produce
the source operand of the operation late are given preference
over others. An ideal hypothetical cluster machine model
has been used and performance is based on statically mea-
sured schedule length.

To assure fairness in comparison we have modified UAS
to give it the benefits of an extended operand ICC model.
To get the the benefit of limited free-of-cost communica-
tion facility available in extended operand ICC model, we
snoop the operand wherever possible to avoid unnecessary
MYV operation.

Lapinskii et al.[10] have proposed an effective binding
algorithm for clustered VLIW processors. Their algorithm
performs spatial scheduling of instructions among clusters
and relies on a list scheduling algorithm to carry out tem-
poral scheduling. Instructions are ordered for consideration
using an ordering function consisting of as late as possible
scheduling time of an instruction, mobility of an instruction

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04) nn

COMPUTER
1530-2016/04 $20.00 © 2004 IEEE SOCIETY

and number of successors of an instruction. They compute
the cost of allocating an instruction to a cluster using a cost
function

Their cost function considers the load on the resources
and buses to assign the nodes to clusters. The load on func-
tional units and communication channels is calculated by
adapting the force directed scheduling approach[17] of be-
havioral synthesis. They emphasize that their partition al-
gorithm strives to exploit the parallelism while minimizing
inter-cluster communication is a secondary criterion. They
have also proposed two binding improvement functions for
further improving the schedule at some computational ex-
pense. These improvement functions reconsider nodes at
the boundary of a partition and look for opportunities for
improvement. Though they have proposed a good cost func-
tion for cluster assignment, partitioning prior to scheduling
takes care of the resource load only in an approximate man-
ner. The exact knowledge of load on clusters and functional
units is known only while scheduling.

6 Conclusions

We have proposed a new framework for scheduling
clustered processors. The framework resolves the phase-
ordering and fixed-ordering problems associated with the
earlier schemes and provides a mechanism to explore the
trade-offs in runtime performance and code size. The
framework is generic and requires slight tweaking of heuris-
tics to adapt to a different cluster VLIW configuration
and ICC model. We observe about 16% and 28% per-
formance improvement on the average over an earlier in-
tegrated scheme and phase-decoupled scheme respectively
without code size penalty.

References

[1] MACHINE SUIF. http://www.eecs.harvard.edu/hube/”.

[2] SUIF Compiler System. “http://suif.stanford.edu/”.

[3] CPLEX, Using the CPLEX callable library Ver3.
“http://www.ilog.com/products/cplex/”, 1995.

[4] A. Aleta, J. M. Codina, J. Snchez, and A. Gonzlez. Graph-
partitioning based instruction scheduling for clustered pro-
cessors. In Proceedings of the 34th annual ACM/IEEE inter-
national symposium on Microarchitecture, pages 150-159.
IEEE Computer Society, 2001.

[5] F. C.Chow and J. L. Hennessy. The priority-based coloring
approach to register allocation. ACM Trans. Program. Lang.
Syst., 12(4):501-536, 1990.

[6] G. Desoli. Instruction assignment for clustered VLIW DSP
compilers: A new approach. Technical Report, Hewlett-
Packard, February 1998.

[7] P. Faraboschi, G. Brown, J. A. Fisher, and G. Desoli. Clus-
tered instruction-level parallel processors. Technical report,
Hewlett-Packard, 1998.

[8] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and
F. Homewood. Lx: A technology platform for customizable
VLIW embedded processing. In Proceedings of the 27th

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04)

1530-2016/04 $20.00 © 2004 1IEEE

(9]

(10]

(11]

(12]

[13]

[14]

[15]

(16]

[17]

(18]

(19]

(20]

[21]

annual international symposium on Computer architecture,
pages 203-213. ACM Press, 2000.

K. Kailas, A. Agrawala, and K. Ebcioglu. CARS :A new
code generation framework for clustered ILP processors.
In Proceedings of the Seventh International Symposium on
High-Performance Computer Architecture (HPCA’01), Jan-
uary 2001.

V. S. Lapinskii, M. F. Jacome, and G. A. De Veciana. Cluster
assignment for high-performance embedded VLIW proces-
sors. ACM Trans. Des. Autom. Electron. Syst., 7(3):430-454,
2002.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-
abench: A tool for evaluating and synthesizing multimedia
and communicatons systems. In Proceedings of the 30th
annual ACM/IEEE international symposium on Microarchi-
tecture, pages 330-335. IEEE Computer Society, 1997.

R. Leupers. Instruction scheduling for clustered VLIW
DSPs. Proceedings of the International Conference on Par-
allel Architecture and Compilation Techniques (Philadel-
phia, PA), October 2000.

D. Matzke. Will physical scalability sabotage performance
gains. IEEE Computer, 30(9):37-39, September 1997.

R. Nagpal and Y. N. Srikant. A graph matching based in-
tegrated scheduling framework for clustered VLIW proces-
sors. Technical Report, Indian Institute of Science, 2004.

R. Nagpal and Y. N. Srikant. Integrated temporal and spa-
tial scheduling for extended operand clustered VLIW pro-
cessors. In Proceedings of the first conference on computing
frontiers, pages 457-470. ACM Press, 2004.

E. Ozer, S. Banerjia, and T. M. Conte. Unified assign and
schedule: A new approach to scheduling for clustered regis-
ter file microarchitectures. In Proceedings of the 31st annual
ACM/IEEE international symposium on Microarchitecture,
pages 308-315. IEEE Computer Society Press, 1998.

P. G. Paulin and J. P. Knight. Force-directed scheduling in
automatic data path synthesis. In 24th ACM/IEEE confer-
ence proceedings on Design automation conference, pages
195-202. ACM Press, 1987.

N. Seshan. High VelociTI Processing. IEEE Signal Process-
ing Magazine, March 1998.

Y. N. Srikant and P. Shankar, editors. The Compiler Design
Handbook: Optimizations and Machine Code Generation.
CRC Press, 2002.

A. Terechko, E. L. Thenaff, M. Garg, J. van Eijndhoven,
and H. Corporaal. Inter-cluster communication models for
clustered VLIW processors. In Proceedings of Symposium
High Performance Computer Architectures, February 2003.
Texas Instruments Inc. TMS320C6000
CPU and Instruction Set reference Guide.
http://www.ti.com/sc/docs/products/dsp/c6000/index.htm,
1998.

nn

COMPUTER
SOCIETY

	footer1:

