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ABSTRACT

In this paper the performance of a multimodel ensemble forecast analysis that shows superior forecast skills
is illustrated and compared to al individual models used. The model comparisons include global weather,
hurricane track and intensity forecasts, and seasonal climate simulations. The performance improvements are
completely attributed to the collective information of all models used in the statistical algorithm.

The proposed concept is first illustrated for a low-order spectral model from which the multimodels and a
‘““nature run” were constructed. Two hundred time units are divided into a training period (70 time units) and
a forecast period (130 time units). The multimodel forecasts and the observed fields (the nature run) during the
training period are subjected to a simple linear multiple regression to derive the statistical weightsfor the member
models. The multimodel forecasts, generated for the next 130 forecast units, outperform all the individual models.
This procedure was deployed for the multimodel forecasts of global weather, multiseasonal climate simulations,
and hurricane track and intensity forecasts. For each type an improvement of the multimodel analysis is dem-
onstrated and compared to the performance of the individual models. Seasonal and multiseasonal simulations
demonstrate a major success of this approach for the atmospheric general circulation models where the sea
surface temperatures and the sea ice are prescribed. In many instances, a major improvement in skill over the
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best models is noted.

1. Introduction

The notion of multimodel forecasting was evident in
the studies of Lorenz (1963), where he examined the
initial state uncertainties in a ssmple nonlinear system.
Much progress has been made in multimodel forecasting
for the conventional weather prediction problems, using
the singular-vector-based perturbations, Molteni et al.
(1996) and the use of breeding modes, Toth and Kalnay
(1997). Several other formulations have appeared in the
current literature, including the simpler Monte Carlo
methods, Mullen and Baumhefner (1994). In seasonal
climate forecasts, the multimodel forecasts are normally
constructed by using initial perturbations from adjacent
start dates, LaRow and Krishnamurti (1998).

Our primary interest is not in the evaluation of the
ensemble mean and its probability characteristics, but
in the evaluation of a statistical combination of various
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models in a postprocessing procedure (super forecast/
analysis). The skill of this technique appears to far ex-
ceed a conventional average of model fields. A number
of model forecasts, solutions based on initial state per-
turbations, and the mean all cluster in one region of the
system phase space. The errors of these models are suf-
ficiently large generally such that the **observed” field
often lies in another part of this phase space. A mul-
timodel analysistendsto lie closer to the observed state
compared to all of these other solutions. This single
algorithm is used for all of the proposed problems, that
is, global weather, hurricane track and intensity fore-
casts, and seasonal climate simulations.

This notion first emerged from the construction of a
low-order spectral model that has been discussed ex-
tensively in the literature; see Lorenz (1963) and Palmer
(1999). Section 2 of this paper discusses the low-order
multimodel forecast. Here we show the time invariance
of a statistic that makes it possible to project solutions,
during a forecast phase, and exhibit fewer errors than
most conventional models. This idea of resilience has
been tested further, in this paper, using a variety of da-
tasets on weather forecasts and seasonal to multisea-
sonal climate simulations. The seasonal simulations are



1 DECeMBER 2000

TABLE 1. Lorenz model parameters.

Nature run Multimodel range of values
R 24.74 22.24-27.74
B 24.74 8.35-18.35
0 45° 42.5-47.5
o 50.0 37.5-62.5

based on AGCMs (a list of acronyms is provided in
appendix B). These are multimodel, 10-yr-long integra-
tions based on AMIP datasets, Gates et al. (1999). The
global numerical weather prediction applications of this
algorithm (appendix A) are based on 1998 datasets from
alarge number of operational weather centers: ECMWHF,
UKMO, NCEPR, RPN, JMA, NRL (NOGAPS), BMRC,
and those devel oped from the FSU global spectral model
forecasts. Also included in this paper are applications
of the same algorithm for hurricane tracks and intensity
forecasts during the 1998 season.

2. Motivation

The motivation for this paper came from the exam-
ination of the solution of a low-order spectral model,
following Lorenz (1963), where we constructed models
by assigning different values to the parameters of this
problem. These parameters provide different values for
the implied heat sources and sinks of this system. As-
signment of different values for these parameters en-
abled us to construct an ensemble of models. One of
these member models was arbitrarily defined as anature
run (i.e., a proxy for the real atmosphere).

The low-order system of Lorenz is described by the
following equations:

X=—oX+ oY + f cosf (1)
Y= -XZ+rX—-Y+ fsino )
Z=—XY - bz ©)

where X, Y, and Z are the spectral amplitudes that are
afunction of time only, the dot denotesatime derivative.
For our purposes we can regard o and r as denoting
source terms, as a dissipation/diffusion coefficient, r as
a heating term and b as the inverse of a scale height.
In the original study of Lorenz, o isthe Prandtl number
(aratio of eddy diffusion coefficient to the thermal dif-
fusion coefficient), r was the ratio of the Rayleigh num-
ber to a critical Rayleigh number, and b denoted the
inverse of a length scale, that is, the size of thermal
convective cells (f cosf and f sind are forcing terms).
The value of f was fixed at 2.5. Random perturbations
were introduced for the values of r, b, 6, and o within
the range given in Table 1. The initial state was defined
by X=0,Y=10,and Z = 0.

This is a simple numerical system that can be inte-
grated forward in time using the standard | eapfrog, time-
differencing scheme with an occasional forward differ-
encing (to dampen the computational mode). The model
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ensemble can be thought of as set of models with dif-
ferent versions of physical parameterization (and/or dif-
fusion) for each model. The different model versions
were generated using the values shownin Table 1, which
also includes the initial state definition that was altered
dlightly by random perturbations. The different initial
states reflect different analyses from different forecasts
systems.

At this point we define the superensemble that is cen-
tral to this paper. A long-term integration through atime
T (of the multimodels) is arbitrarily divided into two
time periods, T1 and T2. Here T1 isregarded as atrain-
ing period and T2 is regarded as the test (or forecast)
period. During the training period, the multimodel var-
iables were regressed against the observed (i.e., the na-
ture run) variables X, Y, and Z. This is simply a least
square minimization of the differences of the time series
of the multimodels and of the nature run. This procedure
provides weights from the regression for the individual
multimodels.

There is an essentia time invariance of the weights
during the training and the test period; see Fig. 1. The
abscissain Fig. 1 denotes time. The training period was
arbitrarily assigned as 70 time units (nondimensional
time following Lorenz), and the test period is between
time units 71 and 200. The time histories of weights
shown in Fig. 1 were calculated using a cross-validation
technique. To accomplish this, the weightsfor any given
date are calculated from all other dates. This time in-
variance is an important feature, which if confirmed for
weather and seasonal climate forecasts, could provide
the possibility for a major improvement in the skill of
our current prediction capability.

Figure 2 represents the principal variables X, Y, and
Z for the Lorenz model runs. The thin, dashed lines
represent the individual model runs, while the solid,
heavy line shows the solution for the nature run. The
heavy, dashed line starting at time 70 shows the solution
for the superensemble. It is clear that the best solution,
that is, the closest to that of the nature run, is seen for
the superensemble, whereas the individual models ex-
hibit large errors since their solutions carry large phase
errors. The solution of the superensemble begins to ex-
hibit a slow growth of error after around 190 time units.
That type of behavior has also been noted in the ap-
plication of this procedure for weather and seasonal cli-
mate forecasts. However, this growth of error begins to
occur so late that one can make a major improvement
in the skill of forecasts over periods of interest. That is
a goal of this paper. The key element in this proposed
technique is the time invariance (resilience) of the sta-
tistics displayed in Fig. 1, and that appears to be present
if systems are not highly chaotic. The systems studied
by Lorenz (1963) and Palmer (1999) were considerably
more chaotic (for the choice of their parameters) com-
pared to the examples we have presented here. We feel
that our choice of parameters is more relevant for the
atmospheric behavior as will be shown from the display
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Fic. 1. Time history of the statistical weights for the Lorenz ex-
periment based on 10 ensemble members. The computations shown
here were made using the cross-validation approach.

of the time invariance of the statistical weights for the
weather and seasonal climate forecasts.

The procedure above is defined by training and test
phases using a simple multiple regression of the model
anomaly forecast fields with respect to the observed
fields. The general procedure is provided in appendix
A and may be thought of as a forecast postanalysis
procedure. During the test phase, the individual model
forecasts together with the aforementioned statistics
provide a superensemble forecast.

3. Datasets

The following datasets were used for the three com-
ponents of the modeling studies reported here.
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FiG. 2. Themultimodel Lorenz solutions (dashed lines), the solution
of the nature run (heavy dark line), and of the superensemble solution
(for time >100 units) shown by heavy dashed lines.

a. Seasonal climate

The AMIP datasets were provided to the research
community by the Lawrence Livermore Laboratory,
Livermore, California. This includes al basic model
variables (such as winds, temperature, sea level pres-
sure, geopotential heights, moisture, and precipitation)
at intervals of one month (i.e., monthly averages) cov-
ering a 10-yr period, January 1979-December 1988.
The multimodels of AMIP used in our study are listed
in Table 2. The observed analysis fields were based on
the ECMWEF reanalysis and these were used in our stud-
ies. All of these observed analysis fields and the mul-
timodel forecast fields were interpolated to a common
resolution of 2.5° latitude by 2.5° longitude and 10 ver-
tical levels for the monthly mean time intervals. In ad-
dition to these datasets, the monthly mean global rainfall
totals were also an important data component. Gadgil
and Sagjani (1998) prepared the precipitation datasets.
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TABLE 3. Resolution of NWP models (1998).
Models ECMWF UKMO JMA NCEP NOGAPS BMRC RPN
Horizontal resolution T213 ~60 km T106 T170 T159 T79 ~35 km
Vertical resolution 31 30 21 42 18 19 28

For precipitation, a merged dataset supplied by NCEP
(Schemm et al. 1992; Kalnay et a. 1996; henceforth
referred to as NCEP merged data) comprising station
data over land and precipitation over the oceans esti-
mated from the Microwave Sounding Unit (Spencer
1993) has been used.

b. Global NWP

Two separate datasets were available for the super-
ensemble forecasts over the globe.

1) Daily winds at 850 hPa (analysis and forecasts
through day 3) for the three months June-July—Au-
gust (JJA) 1998 (at 1200 UTC). Thesewereavailable
from the multimodeling centers: NCEP/MRF,
ECMWE JMA, RPN, BMRC, NOGAPS/NRL and
the UKMO (Table 3).

2) Daily global 500-hPa geopotential heights for the
months January—February—March (JFM) 1999 (at
1200 UTC), including the analysis and daily fore-
casts through day 5. These datasets were used to
generate the superensembl e forecasts and then to ver-
ify these forecasts using anomaly correlations. They
were made available to us by the following centers:
ECMWF, IMA, NCEPR, RPN (Canada), BMRC, NO-
GAPS, and includes also the results from the global
model of FSU.

c. Hurricanes

The datasetsfor the hurricane component of this paper
comprise 12-hourly multimodel forecasts of storm po-
sitions and intensity for hours 0-144 as they became
available. The multimodels include those listed in Table
4. In addition to those, we have al so received the official
‘‘observations’ called the BEST track and intensity, the
Official (subjective) forecasts of the NHC and the su-
perensemble forecasts of this study. Finally we also in-
clude hurricane intensity forecast datasets obtained from
two in-house models of the NHC called SHIPS and
SHIFOR.

4. Seasonal/multiseasonal precipitation simulations

We shall next present the superensemble forecast pro-
cedure based on the simulation datasets of AMIP. Phil-
lips (1994, 1996) described the AMIP models. AMIP
consisted of 31 different global models; the eight models
selected are shown in Table 2. This choice was some-
what arbitrary. This table shows the resolution of the
models and their salient physical parameterizations.
These are all atmospheric general circulation models of
the late-1980s vintage. This was one of the most com-
plete datasets presently available for carrying out our
proposed study on the superensemble. The 10-yr inte-
gration from these respective models had a start date
around 1 January 1979 but was not al the same. The
initial analyses (common to all models) were provided
by ECMWE Other common datasets shared by all these
models included the distribution of monthly mean sea
surface temperatures and sea ice. A common grid was
used for the proposed superensemble studies. Data at
al vertical levels and for al basic variables were in-
terpolated to a common 2.5° latitude— ongitude grid that
was close to the horizontal resolution of most of these
models. In the vertical, these datasets were next inter-
polated to common standard (so-called mandatory) ver-
tical levels(i.e., 1000, 850, 700, 500, 300, and 200 hPa).

We have used two different time options to construct
the superensembl e from the 10-yr-long AMIP runs. Op-
tion 1 uses the last 8 yr of the dataset as a control (or
the training period) and the first 2 yr as the test period.
Here we make use of the monthly mean simulations,
along with the monthly mean analysis fields (provided
by ECMWEF) to generate the **anomaly multiregression
coefficients” (defined in appendix A). These are re-
gression coefficients that may be separately generated
for al grid points for all vertical levels and all basic
variables of the multimodels. It should be noted that
these weightsvary in the three space dimensions. Option
2 simply uses the first 8 yr as control and the last 2 yr
as the test period. We generated the respective weights
for each model using the multiple regression technique
during the training periods. We assume here that the
long-term behavior, that is, a relationship of the mul-

TABLE 4. Resolution of hurricane forecast models.

FSU2 (global FSU3 (regional
Models FSU1 (global) wi/Pl) spectral) NOGAPS GFDL UKMO
Horizontal resolution T126 T126 ~50 km T159 1/6 deg ~60 km
Vertical resolution 14 14 18 19 30
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timodels to the analysis fields, is defined in terms of the
resilience of these weights. We next make use of this
relationship to produce forecasts for an independent
forecast period. For comparison purpose, results shown
hereafter (excluding Figs. 5 and 6) use the following
anomaly expressions (following the notation of appen-
dix A) for the superensemble forecast (S'), the individ-
ual model forecasts (F') and the ensemble mean (M’):

S =S-0, FF=F —F, ad

N
M =3 2 (-~ F. @
An overbar indicates a time mean. It is also important
to understand that when full field plots are shown, the
model climatology is added back.

Figure 3a illustrates the monthly mean tropical pre-
cipitation skill for option 1. The individual model pre-
cipitation rms error lie between 3 and 5.5 day—*. All
AMIP rms errors displayed are calculated using anom-
alies from the respective model’s monthly mean **cli-
matology”’ that isbased on thetraining period. Theerror
of the ensemble mean, around 2.5 mm day—*, is superior
to those of the individual models. The error of the su-
perensemble is approximately 2 mm day—* and is su-
perior to all other measures shown here. Options 1 and
2 have nearly identical results for the errors of the su-
perensembl e during each of their respective training and
test periods. That is because 6 yr of data were common
during their respective training periods.

Several questions naturally arise at this stage: How
good is an error of 2 mm day—'? Is there area skill for
the climate simulations? An rms errors of monthly pre-
cipitation totals of the order of 1-2 mm day—* doesimply
some useful skill, since the range of values of monthly
totalslie between 0 and roughly 20 mm day—*. Theissue
of itsusefulnessis further addressed in the geographical
distribution of these simulations separately. We found
that all simulationsfor different variablesdid not exhibit
any large distinctions between options 1 and 2. Hence,
we shall limit our future discussions to one or the other
option.

Figure 3c illustrates the skill for the meridional wind
over the globa Tropics (30°S-30°N) at 850 hPa for
option 1. These are rms errors from continuous 10-yr
simulations of the models. The individual model errors
lie in the range of 1.5-2.5 m s-*, whereas the errors of
the superensemble (thick black line) liearound 1 m s—2.
Also shown in the illustrations are the errors of the
ensemble mean. Those errors are of the order of 1.3
1.4 m s%; again we note that the errors of the super-
ensemble are distinctively lower than those of the en-
semble mean. Also shown in this diagram are the errors
of climatology based on observations (17-yr average
from 1980 to 1996 based on ECMWF analysis). Similar
results are seen in Fig. 3b for option 2. Overal, the
proposed superensemble procedure has the least errors
compared to all models, the ensemble mean and the

Zl=
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observed climatology. Very similar results are found for
the meridional wind at 850 hPa over a monsoon domain
(Fig. 3d) bounded by 30°S-35°N, 50°-120°E. The re-
sults show a clear separation of errors of the superen-
semble compared to those of the individual models. The
monsoon region is of special interest because of the
rainfall variability. The rms error of therainfall over the
monsoon region (Fig. 3e) lies roughly between 3 and
6.5 mm day* for the individual models and around 2
mm day-* for the superensemble. The errors for the
mean of the models are between 3 and 4 mm day—*.
This holds for both the training and test periods.

Next, we analyzed results for the monthly mean over
various selected domains. Precipitation simulation rms
errors of the monthly are briefly discussed here. The
domains of analysis (Figs. 3f,g,h,i,j) include the North-
ern Hemisphere, Southern Hemisphere, the globe, Eu-
rope (between 30°-55°N and 0°-50°E) and North Amer-
ica (between 25°-55°N and 70°-125°W). Observed
monthly rainfall estimates were obtained from the GPCP
estimates [Arkin and Janowiak (1991)]. The precipita-
tion simulation skill over the globe, Northern Hemi-
sphere, North American domain, and the Tropics from
the superensembl e technique stand out and are superior
to those of the individual model errors. The monthly
errors during the entire 2 yr of the test period (January
1979-December 1980) are quite small, that is, of the
order of 1-2 mm day* for the superensemble, whereas
the errors of the ensemble average were around 2.5 mm
day~*. The range of individual model rms errorsis be-
tween 2 and 5 mm day—* over the various domains.
Furthermore, we note that over several periods, the im-
provement in skill of the superensemble over the best
model exceeds the difference in skill between the best
and the worst individual model. Among all of the fields
we analyzed, we noted that the best results were ob-
tained for the superensembl e statistics of the meridional
wind errors over the Tropics, where that error of the
superensemble was around 1 m s-* throughout the 10-
yr period (training as well as the test period). This is
how far the multiple regression pushes the superensem-
ble solutions toward the observed or the analysis state
during the training phase and that accuracy is nearly
retained during the test period. The tropical results are
expected to be better due to the strong boundary forcing
from the large oceans, whereas in the extratropics, there
are typically large external errors. An ensemble mean
does not have access to spatially weighted models. The
procedure selects the best weighting at each individual
point in space and for each separate variable, creating
a collective, localized reduction of errors.

A comparison of the rms errors of the superensemble
and the ensemble mean for the global domain are shown
in Figs. 3k and 3m for precipitation and 850-hPa zonal
wind, respectively. Here the results for option 2 are
shown, but again, it is emphasized that the option does
not change the representation of the results. In both
cases, the rms errors of the superensemble are less than
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FiG. 3. (a), (b) The rms errors of precipitation for the multimodels and for the superensemble (lower curve). Results over the tropical belt
(30°S-30°N) are displayed. Lower dark line shows the superensemble, the next line above it is for the ensemble mean, and all other lines
denote the results of various models. Units; mm day—*. (a) Denotes option 1 and (b) denotes option 2. (c) The rms errors of the meridional
wind (m st) at 850 hPa over the entire Tropics (30°S-30°N). Thin black lines: The rms error of the various models. Heavy black line: The
rms error of the superensemble. Two lines above superensemble line: Climatology and ensemble mean. (d) The rms error of the meridional
wind over a monsoon domain (m s*). Lower heavy lineis for the superensemble, all other curves are for the individual models. (e) Monthly
monsoon precipitation (mm day ') where the first 8 yr are used for control and the last 2 yr are used for forecast (Domain: 30°S-35°N, 50°—
120°E). (f), (@), (h), (i), (j) The rms errors of precipitation (mm day—*) for the multimodels for option 2. Results are shown for Northern
Hemisphere, Southern Hemisphere, globe, Europe, and North America. (k), (1), (m), (n), (0), (p) A comparison of rmserrorsfor the precipitation
(mm day~1), 850-hPa zonal winds (m s-1), and 850-hPa meridional winds (m s*). Top curve in each box shows error of the ensemble mean,

whereas the lower curve shows the error of the superensemble.

those of the ensemble mean. The reduction in error of
the superensemble over those of the ensemble mean is
of the order of 40%—100%. These results are very sim-
ilar to the results obtained for the meridional wind (Figs.
30 and 3p), as well as in the Indian monsoon domain
for al variables (Figs. 3l,n,p).

This study raises several questions. Are we seeing a
useful skill here, in terms of seasonal and multiseasonal

climate simulations? Why is this skill so high? Given
these very low rms errors for the superensemble, amap-
ping of the predicted fields from the superensemble
leaves no doubt that they carry much more skill com-
pared to the individual models. The collective, useful
information content of multimodels is extracted in the
construction of the proposed postprocessing superen-
semble technique comparing these to the analysis fields
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during atraining period. The removal of biasesfor each
geographical region, at each vertical level and for each
variable, appears to make this a very powerful scheme.
The AMIP results from the individual models did not

seem very impressive. This procedure has been able to
extract some very useful information from the results
of the individual models from local regions where their
skill was higher. As stated earlier, the success of this
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scheme lies in the resilience of a relationship between
the individual models and the analysis field. Further
work is needed to understand the significance of this
relationship and further improve the performance.

Monsoon rainfall differences during 1987 and 1988

A model intercomparison of monsoon simulations
was organized by Dr. Tim Palmer of the ECMWF under
aWMO/WGNE initiative, World Climate Research Pro-
gram (1992). Eight modeling groups participated in
these experiments. A start date of 1 June for each of
the years (1987 and 1988) was used by all the modeling
efforts. Seasonal simulations for these two years were
carried out where the initial data for 1, 2 and 3 June
were provided by ECMWEF from their reanalysis. Ad-
ditional datasets for the sea surface temperature and sea
ice were also provided. The various models used dif-
ferent resolutions. One of the most difficult areas in
seasonal climate forecasting is that of monsoon precip-
itation. Climate models have an inherent drift and model
climatology (i.e., monthly and seasonal means) usually

exhibits large biases. In order to compare model per-
formance against observed (i.e., analysis) fields such a
bias needs to be removed. In the WMO/WGNE initia-
tive, seasona rainfall differences (JJA) for the years
1987 and 1988 exist for the various modeling groups.
Such differences are expected to remove the bias to
some extent. We have somewhat arbitrarily selected the
following models, ECMWF, UKMO, LMD, JMA, and
BMRC, which show these differences. Figures 4a—g
show these model simulations on the differences 1988
minus 1987 seasonal rainfall covering the months JJA.
These are based on a one-season-long simulation of the
precipitation. Figure 4g shows the corresponding ob-
served rainfall differences based on the GPCP. Those
were largely the OLR-based precipitation algorithms.
As was noted by Palmer and Anderson (1994), the cur-
rent state of seasonal monsoon precipitation forecast for
the different models is quite poor.

The multimodel superensemble test phase results
shown in Fig. 4f were carried out from a start date of
1 January 1987, whereas the model simulations shown
in Figs. 4a—e started around 1 June 1979 with observed
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boundary conditions. Figure 4g shows the observed dif-
ferences in the seasonal precipitation for 1988 and the
1987 season over the domain of the Asian monsoon.
We find that superensemble approach predicts the in-
terannual variability of monsoon rainfall (1988 minus
1987) better than all of the multimodels used in com-
parison here. That was also apparent in the statistics of
rmserrors of precipitation that we presented earlier. Fig-
ure 5 shows the time sequence of the rms error for the
meridional wind over the same domain. The arrow at
the bottom right indicates the test period.

5. Global numerical weather prediction

Two datasets covering the periods JJA 1998 and JFM
1999 were used for the postprocessing superensemble
forecasts from various global weather prediction mod-
els. Here we show the results for the global winds at

850 hPa during JJA 1998. Table 3 liststhe model swhose
forecasts were available for this period. In total, we had
seven models, each making 92 forecasts with a start
time at 1200 UTC for each day. The 61 days during
June and July were treated as the training period and
the 31 3-day ‘‘forecasts’ were prepared during theentire
month of August 1998.

Given the differences in the physics and complexity
of weather models, it is not surprising that one notes
varying skills in the performance of these models. Fig-
ure 6 illustrates the 850-mb rms forecast errors on day
3, for various regions. These include the global belt,
Tropics (30°S-30°N); the Asian monsoon region (be-
tween 30°S-40°N and 30°-150°E); USA (25°-55°N,
125°—70°W); Europe (30°-55°N, 0°—40°E); and the en-
tire Northern and Southern Hemispheres. Here we in-
clude day-3 histograms of skills for the seven models
as well as those for the multimodel ensemble (orange).
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Verification skills are calculated against ECMWF anal-
ysis. For the individual models, the rms wind error in-
creases from roughly 2 to 6 m st during the 3-day
forecast. The multimodel superensemble has the least
error compared to each of the models. Furthermore, we
noted that the 3-day skill of the superensemble (rms
error 1.6-4 m s*) is comparable to the day-1 errors for
several of the models. We aso show the rms errors of
the ensemble mean (orange) in these histograms. The
superensemble has a lower error compared to that of
the ensemble mean in all cases. Over many regions, the
ensemble mean has a higher error compared to some of
the best models. This is one of the most promising re-
sults of the proposed approach.

Figure 7b shows an example of atypical 3-day fore-
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cast percent improvement over Europe for the 850-hPa
winds. Although the ECMWF and superensemble fore-
casts are visually similar, there was a 26% area average
improvement of the rmswind error for the superensem-
ble over the ECMWF prediction. Thisis also typical of
most forecasts as seen in Figs. 7aand 7c over the mon-
soon domain and the United States, respectively (Note:
NCEP forecast used in 11c). Small discrepancies over
most domains account for roughly 20% differences in
skill. The superensemble always shows a closer agree-
ment to the analysis field compared to the multimodels
by invoking the models' bias corrections.

The rms error reduction of the zonal wind at 850 hPa
over the entire Tropics for August 1998 is shown in Fig.
8a. The different lines show the percent improvement
over the performance of respective models for forecast
days 1-3. The analysis field of the respective modelsis
used to calculate thermserrors. Overall, we note a10%—
30% improvement in the 850-hPa zonal wind rms errors
from the superensemble. The ensemble means percent-
ages lie in the range of —20% to +20%. In all cases,
the superensemble exhibits a much larger reduction of
error with respect to the multimodel errors and the en-
semble mean errors. It is also interesting to note that
the percent improvement increases with the number of
days of forecast.

To assess how many models are minimally needed to
improve the skill of the multimodel superensemble, we
examined sequentially theissue using one to seven mod-
els. Results for global wind rms errors at 850 mb are
shown in Fig. 8b. We sequentially added models with
lower and lower skill as we proceeded from one model
to seven models. The dashed line shows the error for
the ensemble mean and the solid line indicates that of
the superensemble. The superensemble skill is higher
than that of the ensemble mean for any selection of the
number of ensemble members. The skill of the super-
ensemble between 4 and 7 is small, that is, around 3.6
m s-*. The ensembles mean error increases as we add
more ensemble members beyond 3. That increase came
from the gradual addition of models with low skill. For
two and three models, the skill differences are the small-
est. That rapid increase of error beyond three modelsis
not seen for the superensemble since it automatically
assigns low weights to the model’s low skills. It is also
worth noting that half the skill improvement comesfrom
a single model for this procedure. That is roughly a 5%
improvement for the 850-mb winds for 3-day forecasts.

The ensemble of one is essentially the procedure for
the removal of the bias of a single model. Here the
regression utilizes the past history of the model for each
geographical location, each vertical level, and for each
variable separately. We carried out this exercise for each
of the seven models separately. We then performed an
ensemble mean of these individual bias removed fields.
This was carried out separately for days 1, 2, and 3 of
forecasts. The rms errors of the tropical (30°S-30°N)
850-mb winds for this ensemble mean were compared
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where the collective bias of all models was removed. (d) Anomaly correlations at 500 hPa during JFM 1999. The top curve is that for the
superensemble, the dashed line denotes the error of the superensemble, and the other curves belong to several multimodels.

to that of the statistical multimodel superensemble, Fig.
8c. We clearly see that removal of collective bias is
superior to doing that separately.

When we remove the bias of each model separately,
we find many interesting results. The skill of forecast
of each model isincreased. The poorer models, however,
do not compare as well as the best model after the re-
moval of the individual biases. If we perform an en-
semble mean of all the models, after the biasis removed
individually, the mean still includes the poorer models.
That is because an equal weight is assigned to each
model for the ensemble averaging (after the bias re-
moval). That has an effect of degrading the results. This

is apparent in Fig. 8b, where as more models are in-
cluded, the results eventually become inferior to using
asingle (best) model. The proposed multimodel forecast
technique is superior to the “individual bias removed
ensemble mean” because the superensemble does not
assign an equal weight of 1.0 to al the models. Thus
the poorer models are not excluded in this averaging;
however, in those geographical locations and vertical
levelsfor certain variableswherethey may have ahigher
skill, thisinclusion is helpful. This global bias removal
(geographically, vertically, and for different variables)
is a dominant aspect of the superensemble. For proper
application of such a technique, a priori determination
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of which models perform well and at what locations
could greatly enhance the procession time.

NWP, 500-mb anomaly correlations

Global 500-mb geopotential height for days 06 of
forecasts for the following models were available:
NCER, ECMWF, NOGAPS, FSU, and UKMO. These
daily forecasts covered the period between 1 January
and 31 March 1999. These were the datasets that were
readily available to us on GTS. Anomaly correlations
were defined by using an independent 10-yr ECMWF
daily analysis database to define the climatol ogical 500-
mb geopotential heights for the months of JFM for the
extraction of the anomalies. Figure 8d illustrates the
anomaly correlation of the 500-mb geopotential heights
averaged over JFM 1999. The respective multimodel
forecast results, the anomaly correlation of the ensemble
mean and that of the statistical superensembleare shown
here. Among the individua models the anomaly cor-
relation of the European Center stands out in terms of
skill. The verifications were carried out using the
ECMWEF analysisthat isabit unfair to the other models,
but used as illustration. The anomaly correlation of the
ensembl e averaged geopotential heights performs better
than al the individual models. The results of the su-
perensemble show slightly better results. The smaller
systematic bias of height fields and the smaller im-
provement for thisvariable reemphasizestheimportance
of bias removal on this technique. The same procedure
appears to work equally well for other variables and
hence can, in principle, be used at all vertical levelsfor
al of the model variables including precipitation fore-
casts.

6. Hurricane track and intensity forecasts from
the superensemble

Over the Atlantic, Caribbean, and the Gulf of Mexico,
there were 14 named tropical systems during the 1998
hurricane season. Of these, four became tropical storms
and the remaining reached hurricane strength. The 1998
hurricane season was active between 27 July and 1 De-
cember. Our interest here is on the superensemble fore-
casts skill for the tracks and intensity of these storms.
Ideally, it would have been desirable to develop the
statistics of a control (a training) period from one or
more years of past history. It isimperative that no major
model changes occur within the multimodels during the
course of these “control” and ‘“‘forecast”” periods. A
number of models generally provide hurricane forecast
information; these include NCEP/NOAA, GFDL,
UKMO, NOGAPS/NRL, official forecasts of the NHC
and the FSU suite of models. Table 4 provides a short
summary of these models. In addition to these forecasts,
there exists somein-house prediction modelsat the NHC
that routinely provide hurricane intensity forecasts
(SHIPS, SHIFOR) De Maria and Kaplan (1999). It was
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not possible to acquire uniform datasets, for a string of
years, without major model changes. Four of the afore-
mentioned models, NCEP/MRF, FSU, GFDL, and NO-
GAPS, underwent major resolution changes after the
1997 season. Thus, it was not possible to derive the
statistics based on the multimodel performance with the
1997 datasets and use those to forecast during the 1998
hurricane season. It was still possible to carry out fore-
casts for each and every storm of the 1998 season using
a cross-validation approach, which excludes all days of
a particular hurricane while computing the weights for
its forecast. All other hurricanes of the season are in-
cluded in the evaluation of the weights for the storm
being forecasted. This entails deriving the multimodel
statistics from al storms of 1998, sequentially, exclud-
ing the specific storm that is being forecasted. This is
a robust approach for assessing the validity of the pro-
posed approach for the forecasts of the storms of 1998.
Each of the 14 named stormsin 1998 | asted over severa
days. Thus, it was possible to develop a multimodel
forecast database for 68 sets of forecasts for this entire
season. The methodology for the calculation of regres-
sion coefficients is identical to that described in appen-
dix A. The databases are the model forecasts, the ob-
served, and the official forecast estimate of the track
(position) and intensity (maximum wind estimate) every
12 h, starting from an initial time and ending at hours
72-144, as dictated by the termination of such forecasts.
The weights for the multimodels vary for each forecast
period (i.e., hour 12, 24, 36, 48, and 72). We found that
this gave better results than providing a single set of
multimodel weights for all three days.

First we shall look at the overall statistics of the track
and intensity forecasts for the entire year of 1998. Here
we show the day 1, day 2, and day 3 skills for these
forecasts. The results for the training period are shown
in Fig. 9a, and those for the superensemble forecasts
(cross validation) are presented in Fig. 9b. During 1998,
the best-track forecasts came from the NHC official
component. These are in fact subjective forecasts made
by the forecasters of the NHC in Miami. They are es-
sentially based on consensus from among the suite of
model forecasts available to them. In addition, they also
make use of their past experience on subjective hurri-
cane forecasting while arriving at these official fore-
casts. The histograms on the left panels show, respec-
tively, thetrack forecasts. The superensembletrack fore-
casts are superior to those of al other modelsand official
forecasts for each of the three days. The superensemble,
in the training phase, has position errors of the order of
0.85°% 1.5° and 1.9° for days 1, 2, and 3 of forecasts,
respectively. The corresponding position errors for the
superensemble forecasts (Fig. 9b) are 1.25°, 1.9°, and
2.6° latitude for days 1, 2, and 3, respectively. Similar
results hold for the intensity forecasts as well. The rms
errors of intensity for the training and forecasts from
the superensembl e are better than those of all other mod-
els including the ensemble mean.
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Fic. 9. (@) The rms error for the position (left panel) and the intensity (right panel) for 3-day forecasts of all hurricanes of 1998. Day 1,
day 2, and day 3 forecast errors for the multimodels, the ensemble mean, and the superensemble are shown here. This illustration shows
the results for the control period. (b) Same as (a) but for the forecast period using the cross-validation technique.

In Figs. 10a—f we show several examples of predicted
tracks for Atlantic hurricanes such as Alex, Bonnie,
Danielle, Georges, and Mitch of 1998. Here the pre-
dicted tracks from several models are displayed. These
also include three models from FSU as well, which are

1) a control forecast with the global spectral model at
the resolution T126 with no physical initialization,

2) aforecast at the resolution T126 that includes phys-
ical initialization (Krishnamurti et al. 1991),

3) an ensemble forecast with a high-resolution regional
spectral model following Zhang and Krishnamurti
(1999).

In these illustrations, the tracks use the following sym-
bols:

« BEST denotes the observed best track;
e FSUC denotes the FSU control forecast that does not
include rain-rate initialization;

» FSUP denotestheresultsfor FSU global spectral mod-
el that includes physical initialization;

e FSUE denotes the ensemble averaged track for an
FSU regional spectral model, Cocke (1998), which is
nested within the FSU global spectral model;

e OFCL denotes the official forecast from the NHC;

o GFDL denotesthe forecast made from the geophysical
fluid dynamic or Multiple-Mesh Model of Princeton
(NCEP/NOAA);

» NGPS denotes the U.S. Navy’'s NOGAPS model;

o« UKMT denotes the UKMQO's global model; and

o SENS denotes the track based on the superensemble
forecasts.

InFig. 10 we note that the tracks of the superensemble
are superior to the forecasts made by the multimodels.
A higher accuracy of track forecasts results from the
improved timing for the locations of the superensemble
with respect to the “best track.” In some instances the
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Fic. 11. (a), (b), (c), (d), (e), (f) Same as Fig. 10, but for the intensity of various storms, the official best estimate, and the superen-
semble forecasts.

heading of some of the multimodel storms appears more
accurate, but the timing of their locations compared to
the best track is less accurate compared to the super-
ensemble.

Several specific examples of intensity forecasts from
the superensemble are shown in Figs. 11a—f. A number
of these multimodels provided 3-day forecasts; these
included FSU (three models) through day 6 of forecasts,
NGPS, and GFDL (not all are illustrated in Fig. 11).

We have illustrated two other intensity-forecast esti-
mates provided by the NHC, the SHIPS and SHIFOR
statistical models; see De Maria and Kaplan (1999).
SHIFOR is a statistical hurricane forecast model. It is
based on climatology and persistence and applies only
to storms over the ocean. SHIPS is another simple cli-
matological scheme of the Hurricane Research Division
that makes use of parameters such as maximum possible
intensity, current intensity, vertical shear of the tropo-
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Fic. 12. The rms error of the meridional wind at 850 hPa (m s71) for the AMIP data comparing the superensemble (thick dark line) to
the individual models (thin lines), the ensemble mean (dashed line), and the ensemble with individual model bias removed.

spheric horizontal wind, persistence of intensity change
over the last 12 h, eddy flux convergence of momentum
at 200 mb, zona wind, and temperature within 1000
km of the storm center. The forecasts for days 4, 5, and
6 came from the FSU models (global without physical
initialization, global with physical initialization, and an
ensemble average intensity). Overall, a skill in the in-
tensity forecasts is clearly evident from the superen-
semble. The FSU models contribute to the skill of the
superensemble during days 4, 5, and 6, providing very
useful information for these extended superensemble
forecasts of intensity. The intensity forecasts from
SHIPS and SHIFOR are reasonable for the first three
days of forecasts; however, it is apparent from the over-
all statistics, presented earlier (Fig. 9), that the super-
ensemble outperforms all other models in the intensity
forecast. It is generally recognized that numerical mod-
els have rather poor skill in intensity forecasts. Thiswas
reflected in the multimodel forecasts of the storms of
1998. In most instances the intensity forecasts of the
superensemble are within a** category’ (asindicated by
the horizontal lines on the plots) of the observed best
estimates of intensity. Overall these intensity forecasts
are quite impressive through day 6 of forecasts, given
that the current state of the prediction is accepted as

being quite poor. SHIPS and SHIFOR often underes-
timate the storm intensity by several categories.

7. Concluding remarks and future outlook

One of the major issues we have addressed here re-
latesto theremoval of the collective errorsof al models.
That approach exhibits different characteristics from an
ensemble average of the results. The straight average
approach assigns an equal weight of 1.0to all themodels
and may include several poor models. The mean of these
poor models degrades the overall results, as more of
such models are included. Our approach of the super-
ensemble assigns weights to each model, based on its
performance, geographically, vertically, and for each
variable separately. Thiswould not assign a high weight
to the poorer models over selected regions based on
their past performance.

A postprocessing algorithm based on multiple re-
gression of multimodel solutionstoward observed fields
during a training period shows promise for various ap-
plications during a subsequent test period. The resulting
superensemble reduces the forecast errors below those
of the multimodels. Application of the algorithm to the
simulation of seasonal climate, global weather, and hur-
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ricane track and intensity showsthe most promise. Root-
mean-square errors of the seasonal superensemble sim-
ulations for winds are reduced to less than one-half the
errors of the best models. Precipitation forecast errors
of the order of a few millimeters per day are around
300% better than the individual models. The results
herein clearly show that the superensemble has higher
skills. This performance is attributed to the superior
statistical combination of model anomaly fields com-
pared to the standard technique.

One reason for the algorithm’s superior performance
isitsuse of rms error for defining the statistical forecast
weights. The same metric is used to define rms error
skill scores. The individual model anomalies are not as
good as the removal of the statistical reconstruction of
all the models using the regression technique. The rms
error of the superensemble is shown to be considerably
less than that a simple reconstruction of models. Ini-
tialy, these results seemed strange since we are dealing
with a linear regression. Upon closer examination, we
noted that the computation of the root-mean-square dif-
ferences in obtaining the statistical weightsimplies that
this is not a simple linear problem.

The seasonal climate simulations using the AMIP da-
taset show that the superensemble rms errors for the
monthly mean fields (such as winds, temperature, and
precipitation) are quite small compared to all other mod-
els. Due to regional interannual variability in temper-
ature and precipitation, we examined the AMIP and
WM O/WGNE seasonal monsoon datasets in the context
of the present modeling. We prepared a dataset from
1-yr differences for the models and the observed fields
during the control (or training) phase. We created asim-
ulation of differences using the statistics resulting from
the multiple regression technique. The rms errors of the
difference fields of the superensemble were far lessthan
those of the individual models. Monsoon rainfall dif-
ferences between 1988 (heavy rainfall year) and 1987
(a weak rainfall year) were very promising, again re-
vealing that the superensemble had less errors compared
to the multimodels. The AMIP includes atmospheric
general circulation models that utilize prescribed SSTs
and seaice. Therefore, similar work is needed to explore
the skill of the proposed methodology for coupled at-
mospheric—ocean models.

Our analysis on the number of models needed to im-
prove the skill of the superensemble shows that roughly
six models produce the lowest rms errors for the su-
perensemble global NWP The number of models needed
is likely to change with changes in the models making
up the multimodel set. In the global NWP application,
the superensemble stands out, providing roughly a 20%
improvement over the best models. While examining
local improvements arising from the superensemble, we
noted that it extracts the best information from anumber
of models. An example of that shown in Fig. 7b illus-
trates that an erroneous forecast over a given region
from the best model is corrected from information ex-
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tracted from another model that carries a higher weight-
ing over that region. Therefore, improvement by col-
lective inclusion of good features makes the superen-
semble stand out.

Forecasting the Atlantic hurricanes of 1998 required
using that season’s dataset for both the control and the
forecast phase. This was based on the cross-validation
technique where no data for a storm being forecasted
was used for the evaluation of the statistical weights.
These forecasts showed the best results compared to all
other multimodels. There was a major improvement in
the position and intensity of each storm compared to
most multimodels and in the overall seasonal statistics;
the superensemble outperformed all other models.

Further exploration of methods other than the pro-
posed simple linear multiple regression deserves to be
explored. We have started to examine the use of non-
linear regression and neural network training methods
for possible further improvement in skill. We have also
tested seasonally varying weights for climate applica-
tions, which prove to be very promising, but thetraining
size is greatly reduced. Further work is needed on de-
tailed analysis of the probabilistic properties and ap-
plication for the technique and the weights obtained,
particularly for climate. This may aso lead to a more
efficient and superior technique.

Finally, a detailed separate study on the probabilistic
estimatesisin preparation using the so-called Brier skill
scores among others. In that work we will show that
the superensemble does have measurably much higher
skills for seasonal climate forecasts compared to all in-
dividual models, climatology, and the ensemble mean.
These results will be published in a separate paper.
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APPENDIX A

Creation of a Multimodel Superensemble
Prediction at a Given Grid Point

S=0+> aF - F),

where S = superensemble prediction, O = time mean
of observed state, a, = weight for model i, i = model
index, N = number of models, F, = time mean of pre-
diction by model i, and F; = prediction by model i. The
weights a, are computed at each grid point by mini-
mizing the following function:



1 DECeMBER 2000

t-train

G=2 (-0
t=
where O = observed state, t = time, and t-train = length

of training period (96 months in present case for sea-
sonal prediction).

APPENDIX B

List of Acronyms

Acronym Meaning

AGCMs  Atmospheric general circulation models

AMIP Atmospheric Model Intercomparison Pro-
ject

BEST National Hurricane Centers Best Track Es-
timate

BMRC Bureau of Meteorology Research Centre

CCM2 Community Climate Model 2 of NCAR

CCM3 Community Climate Model 3 of NCAR

DERF Deterministic Extended Range Forecast

ECMWF European Centre for Medium-Range
Weather Forecasts

FSU The Florida State University

FSUC FSU control experiment

FSUE FSU ensemble experiments

FSUP FSU physical initialization experiment

GFDL Geophysical Fluid Dynamics Laboratory

GPCP Global Precipitation Climatology Project

GTS Global Telecommunication System

hPa Hectopascals

ITCZ Intertropical convergence zone

IMA Japan Meteorological Agency

LMD Laboratoire de Meteorologie Dynamique

mb Millibar

mm Millimeter

MRF Medium range forecasts

ms Meters per second

NCAR National Center for Atmospheric Research

NGPS U.S. Navy’s NOGAPS model

NHC National Hurricane Center

NOAA National Oceanic and Atmospheric Admin-
istration

NOGAPS Navy Operationa Globa Atmospheric Pre-
diction System

NRL Naval Research Laboratory

NWP Numerical Weather Prediction

OFCL Officia

OLR Outgoing longwave radiation

rmserror  Root-mean-square error

RPN Recherche en Prévision Numérique

SENS Superensemble

SHIFOR  Statistical Hurricane Intensity Forecast

SHIPS Statistical Hurricane Intensity Prediction
System

UKMO United Kingdom Meteorological Office

uTC Universal standard time
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WGNE Working Group on Numerical Experimen-
tation
WMO World Meteorological Organization
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