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Suspensions far from equilibrium

Sriram Ramaswamy
Centre for Condensed-Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560 012, India

A review is presented of recent experimental and
theoretical work on the dynamics of suspensions of
particles in viscous fluids, with emphasis on phenomena
that should be of interest to experimenters and
theoreticians working on the statistical mechanics of
condensed matter. The article includes a broad intro-
duction to the field, a list of references to important papers,
and a technical discussion of some recent theoretical
progress in which the author was involved.

Equilibrium and nonequilibrium suspensions

SUSPENSIONS of particles in a fluid medium are all around
us1,2. Examples include river water, smog, blood, many liquid
foods, many medicines, cosmetics, paints, and so on. The
particles, which we shall call the solute, are generally
submicron to several microns in size, and the suspending
fluid, which we shall call the solvent, is frequently less
dense than the solute. The viscosity of the solvent could
range from that of water (or air) to several thousands of
times higher. The field of suspension science has
distinguished origins: Einstein’s3 interest in Brownian
motion as evidence for the existence of molecules led
him to calculate the viscosity and diffusivity of a
dilute suspension (before diversions such as relativity
and quantum mechanics took him over completely);
Smoluchowskii’s4,5 studies of sedimentation and aggre-
gation in colloids led to major advances in the theory of
stochastic processes; somewhat more recently, the
challenging many-body nature of the dynamics of
suspensions was highlighted in the work of Batchelor6.
Today, the study of the static and dynamic properties of
suspensions from the point of view of statistical mechanics
is a vital part of the growing field of soft condensed matter
science.
  In applications and in industrial processing, suspensions
are usually subjected to strongly nonequilibrium
conditions. By nonequilibrium I mean that the system in
question is driven by an external agency which does work
on it – stirring, pumping, agitation – which the system
dissipates internally. The bulk of interesting and, by and
large, incompletely understood phenomena in suspension
science, and in the area of complex fluids in general, are also
those that occur far from equilibrium. Problems in which I
have been or am currently interested are: the melting of

colloidal crystals when they are sheared7–13; spontaneous
segregation in sheared hard-sphere suspensions14; the
collapse of elastic colloidal aggregates under gravity15, and
its possible relation to the instability of sedimenting
crystalline suspensions12,16,17; the enhancement of red-
blood-cell sedimentation rates in the blood of a very sick
person18; and the puzzle19–23 of the statistics of velocity
fluctuations in ultraslow fluidized beds. (References 24–31
should give the reader an idea of the range of this field.)
None of the observations in the papers I have mentioned
can be understood purely with the methods used to study
hydrodynamic instabilities: they are fluctuation phenomena,
and therefore belong in this special issue on nonequilibrium
statistical physics.
  A suspension can be out of equilibrium in a number of
ways: in particular, it could be in a nonstationary state (in
the process of settling or aggregating or crystallizing, for
example), or it could be stuck in a metastable amorphous
state32 or it could be held, by the application of a driving
force, in a time-independent but not time-reversal invariant
state with characteristics different from the equilibrium
state. In this article we shall mainly be concerned with these
nonequilibrium steady states, characterized by a constant
mean throughput of energy. These are to be contrasted
with thermal equilibrium states which have a constant
mean budget of energy, i.e. a temperature. A suspension of
charged Brownian particles with precisely the same density
as the solvent, such as are discussed in the review article
by Sood33 is the standard example of an equilibrium
suspension. The two most common ways of driving a
suspension out of equilibrium are shear34, wherein the
solute and solvent are jointly subjected to a velocity
gradient, and sedimentation or fluidization35, where the
velocity of solute relative to solvent is on average nonzero
and spatially uniform. This latter class of problems is very
close to the currently rather active area of driven diffusive
systems36, which has provided much insight into statistical
physics far from equilibrium.
  Accordingly, this review will focus largely on sedi-
mentation and fluidized beds, although a brief summary of
shear-flow problems with relevant references will be
provided. Even with this restriction, the field is much too
vast to allow anything like representative coverage, so my
choice of topics will be dictated by familiarity, in the hope
that the problems I highlight will attract the reader to the
area. It is in that sense not a true review article, but an
advertisement for a field and therefore includes as an
integral part a reasonably large list of references. The aim ise-mail: sriram@physics.iisc.ernet.in
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to give a general idea of the richness of phenomena in
nonequilibrium suspensions, as well as a technical
understanding of some of my theoretical work in this field.
To theoreticians, especially in India, this article argues that
the vast literature on suspension dynamics is a largely
untapped lode of problems in the statistical physics of
driven systems. Elegant models of the sort popular among
practitioners of the more mathematical sort of statistical
mechanics could acquire a greater meaning and relevance if
born out of an attempt to understand phenomena in these
systems (for an example of such an attempt, see the section
on the stability of steadily drifting crystals). I hope in
addition that this article persuades condensed-matter
experimenters in India to look for problems in these and
related soft-matter systems (including powders, on which I
am not competent to write), which are as rich as traditional
solid-state systems, without the complications of low
temperatures, high vacuum, etc.
  I shall work exclusively in the limit of slow motions
through highly viscous fluids, i.e. the limit of low Reynolds
number Re ≡ Ua/ν, where U is a typical velocity, a the
particle size, and the kinematic viscosity
ν ≡ µ/ρ, µ and ρ being respectively the shear viscosity
and mass density of the solvent. Re, which measures the
relative importance of inertia and viscosity in a flow, can
here be thought of simply as the fraction of a particle’s own
size that it moves if given an initial speed U, before
viscosity brings it to a halt. For bacteria (sizes of order 1 to
10 microns) swimming at, say, 1 to 10 microns a second in
an aqueous medium, Re ~ 10–6 to 10–4, and for polystyrene
spheres (specific gravity 1.05, radius 1 to 10 µm)
sedimenting in water, Re ~ 10–7 to 10–4. So we are amply
justified in setting Re to zero. Recall that in the low Re limit,
things move at a speed proportional to how hard they are
pushed, and stop moving as soon as you stop pushing.
While this corresponds very poorly to our experience of
swimming, it is an accurate picture of how water feels to a
bacterium or to a colloidal particle. A good general
introduction to the subject of zero Reynolds-number flow is
given in Happel and Brenner37, although standard fluid
dynamics texts38,39 also discuss it. A very detailed treatment
of the dynamics of hydrodynamically interacting particles
can be found in ref. 40.
  The dimensionless control parameter relevant to zero
Reynolds number suspensions is the Peclet number
Pe ≡ Ua/D (ref. 1), where D = T/6πµa is the Stokes–Einstein
diffusivity of the particle at temperature T. In a shear flow
with velocity gradient ,γ&  clearly U ~ ,aγ&  so that Pe ~        
   which is the ratio of a diffusion time to a shearing time. In
sedimentation, Pe measures the relative importance of
settling (gravitational forces) and diffusion (thermal
fluctuations), and can be expressed as mRga/T, where mRg is
the buoyancy-reduced weight of the particle, g being the
acceleration due to gravity. Since Pe ∝ a4, it is clear that
small changes in the particle radius make a large difference.
For polystyrene spheres in water, Pe ranges from 0.5 to 5000

as the radius is varied from 1 to 10 µm. Suspensions with
Pe >> 1 are termed non-Brownian, since their behaviour is
dominated by the gravity-induced drift and the resulting
solvent flow, not by thermal fluctuations. This Pe = ∞,
Re = 0 limit turns out to be a very interesting one.
  The most trivial example of a nonequilibrium suspension
is a single solute particle, heavier than its solvent, so that in
the presence of gravity it settles to the bottom of the
container. If we wish to study the steady-state properties of
this settling process, we must make the particle settle
forever. There are two ways of doing this: either use a very
tall container and study the flow around the particle as it
drifts past the middle, or arrange to be in the rest frame of
the particle. The latter is realized in practice by imposing an
upward flow so that the viscous drag on the particle
balances its buoyancy-reduced weight, suspending the
particle stably. The nature of the flow around such an
isolated particle, without Brownian motion and in the limit of
low velocity, was studied about a century and a half ago41.
As soon as the number of particles is three or greater, the
motion becomes random even in the absence of a thermal
bath (this can be seen either in Stokesian dynamics
simulations42 or simply by using particles large enough that
Brownian motion due to thermal fluctuations is negligible)
because the flow produced by each particle disturbs the
others, leading to chaos43. In the limit of a large number of
particles, the problem can thus be treated only by the
methods of statistical mechanics (suitably generalized to the
highly nonequilibrium situations we have in mind). A
collection of particles stabilized against sedimentation by an
imposed upflow is called a fluidized bed.
  It is useful here to distinguish two classes of non-
equilibrium systems. In thermal driven systems the source
of fluctuations is temperature, and the driving force (shear,
for example) simply advects the fluctuations injected by the
thermal bath. An example of this type would be a
suspension of submicron particles, whose Brownian motion
is substantial, subjected to a shear flow. Non-thermal
driven systems are more profoundly nonequilibrium, in that
the same agency is responsible for the driving force and the
fluctuations. A sedimenting non-Brownian many-particle
suspension is thus an excellent example of a non-thermal
nonequilibrium system.
  The structure of this article is as follows. In the next
section I summarize our present state of understanding of
the shear-induced melting of colloidal crystals. Then, I
discuss the physics of steadily sedimenting colloidal
crystals, including the construction of an appropriate driven
diffusive model for which exact results for many quantities
of physical interest can be obtained. The next section
introduces the reader to the seemingly innocent problem of
the steady sedimentation of hard spheres interacting only
via the hydrodynamics of the solvent. Puzzles are
introduced and partly resolved. The last section  is a
summary.
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Shear-melting of colloidal crystals

It has been possible for some years now to synthesize
spheres of polystyrene sulphonate and other polymers,
with precisely controlled diameter in the micron and
submicron range. These ‘polyballs’ have become the
material of choice for systematic studies in colloid science33.
In aqueous suspension, the sulphonate or similar acid end
group undergoes ionization. The positive ‘counterions’ go
into solution, leaving the polyballs with a charge of several
hundred electrons. The counterions together with any ionic
impurities partly screen the Coulomb repulsion between the
polyballs, yielding, to a good approximation in many
situations, a collection of polymer spheres interacting
through a Yukawa potential exp(– κ r)/r with a screening
length κ–1 in the range of a micron, but controllable by the
addition of ionic impurities (NaCl, HCl, etc.). Not
surprisingly, when the concentration of particles is large
enough that the mean interparticle spacing as ~ κ–1, these
systems order into crystalline arrays with lattice spacings
~ as comparable to the wavelength of visible light. The
transition between colloidal crystal and colloidal fluid is a
perfect scale model of that seen in conventional simple
atomic liquids33. It is first-order and the fluid phase at
coexistence with the crystal has a structure factor whose
height is about 2.8. The transition is best seen by varying
not temperature but ionic strength. These colloidal
crystals33 are very weak indeed, with shear moduli of the
order of a few tens of dyn/cm2. The reason for this is clear:
the interaction energy between a pair of nearest neighbour
particles is of order room temperature, but their separation is
about 5000 Å. Thus on dimensional grounds the elastic
moduli, which have units of energy per unit volume, should
be scaled down from those of a conventional crystal such
as copper by a factor of
5000–3 ~ 10–11. It is thus easy to subject a colloidal crystal to
stresses which are as large as or larger than its shear
modulus, allowing one to study a solid in an extremely
nonlinear regime of deformation. One can in fact make a
colloidal crystal flow if the applied stress exceeds a modest
minimum value (the yield stress) required to overcome the
restoring forces of the crystalline state.
  When a colloidal crystal is driven into such a steadily
flowing state, it displays at least two different kinds of
behaviour, with a complex sequence of intermediate stages
which appear to be crossovers rather than true
nonequilibrium phase transitions, and whose nature
depends strongly on whether the system is dilute and
charge-stabilized or concentrated and hard-sphere-like7–9. I
shall focus on the two main ‘phases’ seen in the
experiments, not the intermediate ones. At low shear-rates,
it flows while retaining its crystalline order: crystalline
planes slide over one another, each well-ordered but out of
registry with its neighbours. At large enough shear-rates, all
order is lost, through what appears to be a nonequilibrium
phase transition from a flowing colloidal crystal to a flowing

colloidal liquid. The shear-rate required to produce this
transition depends on the ionic strength ni, and appears to
go to zero as ni approaches the value corresponding to the
melting transition of a colloidal crystal at equilibrium. This
connection to the equilibrium liquid–solid transition
prompted us to extend the classical theory44 of this
transition to include the effects of shear flow. I will not
discuss our work on that problem here: the interested reader
may read about them in Ramaswamy and Renn10 and Lahiri
and Ramaswamy11. The problem remains incompletely
understood, and work on it especially in experiments and
simulations continues13. I mention it here as an outstanding
problem in nonequilibrium statistical physics on which I
should be happy to see further progress.

The stability of steadily drifting crystals

The crystalline suspensions of the earlier section are
generally made of particles heavier than water. Left to
themselves, they will settle slowly, giving slightly
inhomogeneous, bottom-heavy crystals with unit cells
shorter at the bottom of the container than at the top. To
get a truly homogeneous crystal, one must counteract
gravity. This is done, as remarked earlier, in the fluidized
bed geometry, where the viscous drag of an imposed
upflow balances the buoyant weight of the particles. As a
result, one is in the rest frame of a steadily and perpetually
sedimenting, spatially uniform crystalline suspension,
whose steady-state statistical properties we can study.
Although most crystalline suspensions are made of heavier-
than-water particles, and therefore do sediment, there have
been only a few studies45 that focus on this aspect. Rather
than summarizing the experiments, I shall let the reader read
about them45. Our work was in fact inspired by attempts to
understand drifting crystals in a different context, namely
flux-lattice motion46, and the interest in crystalline fluidized
beds arose when we chanced upon some papers by
Crowley47, to whose work I shall return later in this review.
  As with crystals at equilibrium, the first thing to
understand was the response to weak, long-wavelength
perturbation. For a crystal at thermal equilibrium, elastic
theory48 and broken-symmetry dynamics49,50 provide, in
principle, a complete answer. Our crystalline fluidized bed,
however, is far from equilibrium, in a steady state in which
the driving force of gravity is balanced by viscous
dissipation. We must therefore simply guess the correct
form for the equations of motion, based on general
symmetry arguments16. This general form should apply in
principle to any lattice moving through a disspative medium
without static inhomogeneities. Apart from the steadily
sedimenting colloidal crystal, another example is a flux-point
lattice moving through a thin slab of ultraclean type II
superconductor under the action of the Lorentz force due to
an applied current51. We will restrict our attention to the
former case alone in this review.
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  One technical note is in order before we construct the
equations of motion. A complete analysis of the sedi-
mentation dynamics of a three-dimensional crystalline
suspension requires the inclusion of the hydrodynamic
velocity field as a dynamical variable. This is because the
momentum of a local disturbance in the crystalline fluidized
bed cannot decay locally but is transferred to the nearby
fluid and thence to more and more remote regions. We get
around this difficulty by considering an experimental
geometry in which a thin slab of crystalline suspension
(particle size a << interparticle spacing λ ) is confined in a
container with dimensions Lx, Lz >> Ly ~ λ (gravity is along

).ẑ−  The local hydrodynamics that (see below) leads to
the configuration-dependent mobilities16,47 is left unaffected
by this, but the long-ranged hydrodynamic interaction is
screened in the xz plane on scales >> Ly by the no-slip
boundary condition at the walls, so that the velocity field of
the fluid can be ignored.
  Instead of keeping track of individual particles, we work
on scales much larger than the lattice spacing λ, treating the
crystal as a permeable elastic continuum whose distortions
at point r and time t are described by the (Eulerian)
displacement field u(r, t). Ignoring inertia as argued above,
the equation of motion must take the general form
velocity = mobility × force, i.e.
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In eq. (1), the first term in parentheses on the right-hand
side represents elastic forces, governed by the elastic
tensor K, the second (F) is the applied force (gravity, for the
colloidal crystal and the Lorentz force for the flux lattice),
and f is a noise source of thermal and/or hydrodynamic
origin. Note that in the absence of the driving force F the
dynamics of the displacement field in this overdamped
system is purely diffusive: ∂t u ~∇2u, with the scale of the
diffusivities set by the product of a mobility and an elastic
constant. All the important and novel physics in these
equations, when the driving force is nonzero, lies in the
local mobility tensor M, which we have allowed to depend
on gradients of the local displacement field. The reason for
this is as follows: The damping in the physical situations we
have mentioned above arises from the hydrodynamic
interaction of the moving particles with the medium, and will
in general depend on the local configuration of the particles.
If the structure in a given region is distorted relative to the
perfect lattice, the local mobility will depart from its ideal-
lattice value as well, through a dependence on the
distortion tensor ∇u. Assuming, as is reasonable, that M
can be expanded in a power series in ∇u, eq. (1) leads to

(2)

    =zu& λ3∂xux + λ4∂zuz

         + O(∇∇u) + O(∇u∇u) + f z , (3)

where the nonlinear terms as well as those involving the
coefficients λi are a consequence of the sensitivity of the
mobility to local changes on the concentration and
orientation, and are proportional to the driving force
(gravity). They are thus absent in a crystal at equilibrium.
The {λi} terms dominate the dynamics at sufficiently long
wavelength for a driven crystal, since they are lower order
in gradients than the O(∇∇u) elastic terms. It is immediately
obvious that the sign of the product α ≡ λ2λ3 decides the
long-wavelength behaviour of the steadily moving crystal.
If α > 0, small disturbances of the sedimenting crystal
should travel as waves with speed ~ λi, while if α < 0, the
system is linearly unstable: disturbances with wave vector
k with k x ≠ 0 should grow at a rate            Symmetry
cannot tell us which of these happens: the sign of α
depends on the system in question, and is determined by a
more microscopic calculation than those presented above.
  This is where the work of Crowley47 comes in. He studied
the settling of carefully prepared ordered arrays of steel
balls in turpentine oil, and found they were unstable. He
also calculated the response of such arrays to small
perturbations, taking into account their hydrodynamic
interaction, and found that the theory said that they should
indeed be unstable. Thus, one would expect crystalline
fluidized beds to be linearly unstable (the analogous
calculation for drifting flux lattices in type II super-
conductors finds linearly stable behaviour51)  and is hence
described by eqs (2) and (3) with α < 0. However,
Crowley’s47 arguments and experiments were for an array of
particles merely prepared in the form of an ordered lattice.
Unlike in the case of a charge-stabilized suspension, there
were no forces that favoured such order at equilibrium in
the first place. Our model eqs (2) and (3), however, contain
such forces as well as nonlinearities and noise. While the
elastic terms are of course subdominant in a linearized
treatment at long wavelength to the {λi} terms, which are
O(∇u), we asked whether these terms, in combination with
nonlinearities and noise could undo or limit the Crowley
(α < 0) instability.
  We answer this question not by studying eq. (3) with
α < 0, but instead by building a discrete Ising-like dynamical
model embodying the essential physics of those equations.
The crucial features of the dynamics implied by eq. (3)  (see
Happel and Brenner37 and Crowley47) are that a downtilt
favours a drift of material to the right, an uptilt does the
opposite, an excess concentration tends to sink, and a
deficit in the concentration to float up. Let us implement this
dynamics in a one-dimensional system with sites labelled by
an integer i, and describe the state of the lattice of spheres
in terms of an array of two types of two-state variables:
ρi = ±, which tells us if the region around site i is
compressed (+) or dilated (–) relative to the mean, and
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θi = ± which tells us if the local tilt is up (+, which we will
call ‘/’) or down (–, which we will denote ‘\’). Let us put the
two types of variables on the odd and even sublattices. A
valid configuration could then look like
ρ1θ1ρ2θ2ρ3θ3ρ4θ4 = + \ + / – \ + \ – / – /. An undistorted
lattice is then a statistically homogeneous admixture of +
and – for both the variables (a ‘paramagnet’). The time-
evolution of the model is contained in a set of transition
rates for passing from one configuration to another, as
follows16,17,52:

    W(+ \ – → – \ +) = D + a

    W(– \ + → + \ –) = D – a

    W(– \ + → + \ –) = D′ + a′
    W(+ \ – → – \ +) = D′ – a′ (4)

    W(/ + \ → \ + / ) = E + b

    W( \ + / → / + \ ) = E – b

    W( \ – / → / – \ ) = E′ + b′
    W( / – \ → \ – / ) = E′ – b′,

where the first line, for example, represents the rate of + –
going to – + in the presence of a downtilt \, and so on. D, E,
D′, E′ (all positive) and a, b, a′, b′ are all in principle
independent parameters, but it turns out to be sufficient on
grounds of physical interest, relevance to the sedimentation
problem, and simplicity to consider the case D = D′, E = E′,
a = a′, b = b′, with γ ≡ ab > 0 corresponding to α = λ2λ3 < 0
in eqs  (2) and (3).
  Associating ρi with ∂xux and θi with ∂xuz we expect that
the above stochastic dynamics yields, in the continuum
limit, the same behaviour as a one-dimensional version of
eqs (2) and (3) in which all z derivatives are dropped, and
appropriate nonlinearities are included to ensure that the
instability seen in the linear approximation is controlled.
This mapping provides a convincing illustration of the close
connection between quite down-to-earth problems in
suspension science and the area of driven diffusive
systems which is currently the subject of such intense
study36.
  Initial numerical studies16 of eq. (4) suggested a tendency
towards segregation into macroscopic domains of + and –,
as well of / and \ with interfaces between + and – are shifted
with respect to those between / and \ by a quarter of the
system size. This arrangement is just such as to make it
practically impossible, given the dynamical rules eq. (4), for
the domains to remix. The numerics seemed to suggest that
enough interparticle repulsion or a high enough temperature
could undo the phase separation, but this turned out to be a
finite size effect. We have shown52 that the model always
phase-separates for γ > 0. More precisely, we have shown
exactly, for the symmetric case Σiρi = Σiθi = 0, if        
that the steady state of our model obeys detailed balance,
(i.e. acts like a thermal equilibrium system) with respect to
the energy function

H                   A little reflection will convince the
reader that this is like the energy of particles (the {ρi}) on a
hill-and-valley landscape with a height profile whose local
slope is θi. Since the dynamics moves particles downhill,
and causes occupied peaks of the landscape to turn into
valleys, it is clear that the final state of the model will be one
with a single valley, the bottom of which is full of pluses
(and the upper half full of minuses). It is immediately clear
that this phase separation is very robust, and will persist at
any finite temperature (i.e. any finite value of the base rates
D and E). Figure 1 demonstrates this graphically.
  Many properties of the model (eq. (4)) can be obtained
exactly in the detailed-balance limit mentioned above. These
include the prediction that the phase separation, while
robust, is anomalously slow: domain sizes grow with time t
as log t. It is important to note that the behaviour obtained
exactly for the above special values of parameters can be
shown to apply much more generally. This phase
separation, in terms applicable to a real crystalline
suspension, leads to macroscopic particle-rich and particle-
poor regions. In the middle of each such region, one expects
a fracture separating regions of opposite tilt. There are
preliminary reports of such behaviour in experiments53, and
it is tempting to think that some recent observations15 of the
collapse of elastic aggregates in suspension are related to
the above ideas, but this is mere speculation at this point.
Detailed experiments on large, single-crystalline fluidized
beds are needed to test the model.

Velocity fluctuations in fluidized beds

Hard-sphere suspensions, in which the only interactions are
hydrodynamic, are a subject of continuing interest to fluid
dynamicists, as should be clear from a glance at current
issues of fluid mechanics journals (or physics journals, for
that matter). In practice, these suspensions are charge-
stabilized, with ionic strength so large that electrostatics is
screened within a tiny distance of the particle surface33,
making the particles effectively hard spheres. Up to volume
fractions of about 0.5, the particles in these suspensions
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Figure 1.  A schematic picture of the final state of phase
separation of the one-dimensional model: The tilt field has been
summed to give the height of the profile at each point, the filled
circles denote pluses and the open circles minuses. It is clear that for
the phase separation to undo itself a plus, for example, must climb a
distance of order 1/4 of the system size. The time for this to happen
diverges exponentially with system size.
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have only short-ranged positional correlations, and move
freely. They are thus fluid suspensions unlike the
crystalline suspensions we discussed earlier. The
suspensions of our interest are made of large particles
(several microns in size), so that Brownian motion is
unimportant, but (as discussed earlier) there is nonetheless
a substantial random component to the motion if the system
is sedimenting or sheared. Single-component suspensions
are themselves the home of many mysteries, as the
references in earlier sections will bear out, while two (or
more) -component suspensions31,54 are understood even
less. I will focus on just one puzzle in monodisperse sus-
pensions, and on what I believe is its resolution using
methods imported from time-dependent statistical
mechanics.
  Until recently, theory and experiment disagreed rather
seriously on the nature of velocity fluctuations in these
suspensions in steady-state sedimentation. A simple
theory19 predicted that σv(L), the standard deviation of the
velocity of the particles sedimenting in a container of size L,
should diverge as      while experiments20,21 saw no such
dependence (For a dissenting voice, see Tory et al.55). More
precisely, Segrè et al.21 see size dependence for L smaller
than a ‘screening length’ ξ ~ 30 interparticle spacings, but
none for L > ξ. Further confusion is provided by direct
numerical simulations which do seem to see the size-
dependence56, although these contain about 30,000
particles, which, while that sounds large, means they are
only about 30 particles on a side, which probably just
means that these huge simulations have not crossed the
scale ξ of Segrè et al.21!
  It is important to note that experiments in this area are
frequently done by direct imaging of the particles at each
time (Particle Imaging Velocimetry or PIV, see Adrian57).
Since motions are slow (velocities of a few µm/s), this is
relatively easy to do. Once the data on particle positions are
stored, they can be analysed in detail on a computer and
objects of interest such as correlation functions extracted.
This is one of the nice things about the field of suspension
science: problems of genuine interest to practitioners of
statistical physics arise and can be studied in relatively
inexpensive experiments, which measure quite directly the
sorts of quantities a theoretician can calculate.
  Our contribution to this issue22,23 is to formulate the
problem in the form of generalized Langevin equations, and
then use methods well-known in areas such as dynamical
critical phenomena to construct a phase diagram for
sedimenting suspensions. Our approach is close in spirit to
that of Koch and Shaqfeh58, but differs in detail and
predicitive power. We find that there are two possible
nonequilibrium ‘phases’, which we term ‘screened’ and
‘unscreened’, for a steadily sedimenting suspension. In the
screened phase, σv(L) is independent of L, while in the
unscreened phase, it diverges as in Caflisch and Luke19. The
two phases are separated by a boundary which has the
characteristics of a continuous phase transition, in that a

certain correlation length diverges there in a power-law
manner. Although the relation between the parameters in
terms of which our phase diagram is drawn and
conventional suspension properties is still somewhat
uncertain, we believe that the screened and unscreened
phases should occur respectively at large and small Peclet
numbers. Properties such as particle shape (aspect ratio)
and Reynolds number also probably play a role in
determining where in our phase diagram a given system lies.
  Let us begin by reconstructing the prediction of Caflisch
and Luke19. Let δ v(r) and δ c(r) be respectively the local
velocity and concentration fluctuations about the mean in a
steadily sedimenting suspension, each of whose particles
has a buoyancy-reduced weight mRg. Then, ignoring inertia,
the balance between gravitational (acceleration g) and
viscous (viscosity η) force densities is expressed in the
relation η∇2δv ~ mRgδc(r, t). This implies that a
concentration fluctuation at the origin leads to a velocity
field ~ g/(ηr) a distance r away. Now, if you assume, with
Caflisch and Luke19, that the δc’s are completely random in
space or have at best a finite range of correlations, the
variance 〈|δv|2〉 due to all the concentration fluctuations is
obtained by simply squaring and adding incoherently
giving, for a container of finite volume L3,
(g/η)2 ∫d3r (1/r2) ~ L. What this tells us, really, is that either
〈|δv|2〉 diverges or the concentration fluctuations are
strongly anticorrelated at large length scales. What we
should do, therefore, is not assume a spectrum of
concentration fluctuations and calculate the velocity
variance, but calculate both of them.
  To this end, let me first summarize the construction of the
equations of motion for the suspension. Our description is
phenomenological, to precisely the same extent as a
continuum Ginzburg–Landau model or its time-dependent
analogue for an equilibrium phase transition problem such
as phase separation in a binary fluid. Our construction is
constrained by the following general principles, each of
which plays an indispensable role: (i) We need to keep track
only of the slowest variables in the problem. (ii) Assuming
our suspension has not undergone a phase transition into a
state where some invariance (translation, rotation) is
spontaneously broken, the only slow variables are the local
densities of conserved quantities. For an incompressible
suspension, these are just the particle concentration and
the suspension momentum density (effectively, for a dilute
suspension, the fluid velocity field). (iii) To get the long
wavelength physics right, we can work at leading order in a
gradient expansion. (iv) We must keep all terms not
explicitly forbidden on grounds of symmetry, and impose
no relations amongst the phenomenological parameters
other than those forced on us by the symmetries of the
problem. (v) Since the microscopic Stokesian dynamics
shows chaotic behaviour and diffusion (see earlier
sections), our coarse-grained model, since it is an effective
description for the long-wavelength degrees of freedom,
should contain stochastic terms (a direct effect of the

,L
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eliminated fast degrees of freedom) as well as diffusive
terms (an indirect effect) but with no special (fluctuation–
dissipation) relation between them. Since only a limited
range of modes (say, with wave numbers larger than a
cutoff scale Λ, of order an inverse interparticle spacing)
have been eliminated, the resulting noise can have
correlations only on scales smaller than Λ–1. As far as a
description on scales >> Λ–1 is concerned, the noise can be
treated as spatially uncorrelated. This approach, we argue,
should yield a complete, consistent description of the long-
time, long-wavelength properties of the system in question.
These premises accepted, one is led inevitably to a
stochastic advection–diffusion equation

t

c

∂
∂δ

+ δ v ·∇δc = [D⊥∇⊥
2   + Dz∇z

2  ]δ c + ∇ · f(r, t), (5)

for the concentration field δc and the Stokes equation

η∇2δ vi(r, t) = mR gPizδc(r, t). (6)

for the velocity field δv. Equation (6) simply says that a local
concentration fluctuation, since the particles are heavier
than the solvent, produces a local excess force density
which is balanced by viscous damping. In eq. (5),         
are respectively the projectors along and normal to the z-
axis, which is the direction of sedimentation.
Incompressibility (∇ · δδv = 0) has been used to eliminate the
pressure field in eq. (6) by means of the transverse projector
Pij (in Fourier space Pij(q) = δij –qiqj/q

2). Equation (5)
contains the advection of the concentration by the velocity,
an anisotropic hydrodynamic diffusivity (D⊥, Dz), and a
noise or random particle current f(r, t). The last two are of
course a consequence of the eliminated small-scale chaotic
modes. The noise is taken, reasonably, to have Gaussian
statistics with mean zero and covariance

,)()()(),(),( 0 ttNNctftf z
ijzjji ′−′−+=〉′′〈 ⊥

⊥ δδδδ rrrr

(7)

where c0 is the mean concentration. In an ideal non-
Brownian system, the noise variances (N⊥, Nz) and the
diffusivities (D⊥, Dz) should, on dimensional grounds, scale
(at fixed volume fraction) as the product of the Stokesian
settling speed and the particle radius. However, no further
relation between the noise and the diffusivities may be
assumed, since this is a nonequilibrium system. In
laboratory systems there will of course be in addition a
thermal contribution to both noise and diffusivities. In
either case, what matters, and indeed plays a crucial role in
our nonequilibrium phase diagram, is that the parameter

K ≡ N⊥Dz – D⊥Nz (8)

is in general nonzero. Since at equilibrium the ratio of noise

strength to kinetic coefficient is a temperature, K measures
the anisotropy of the effective ‘temperature’ for this driven
system.
  As a first step towards extracting the behaviour of
correlation functions and hence the velocity variance, note
that eqs (5) and (6) can be solved exactly if the nonlinear
term in eq. (5) is ignored. This amounts to allowing
concentration fluctuations to produce velocity fluctuations
while forgetting that the latter must then advect the former.
If we do this, then it is straightforward to see by Fourier-
transforming eq. (5) that the the static structure factor
S(q) ≡ c0

–  1 ∫r e–iq·r 〈δc(0)δc(r)〉 (where the angle brackets
denote an average over the noise) for concentration
fluctuations with wave vector q = (q⊥, qz) in a suspension
with mean concentration c0 is

,)(
22

22

zz

zz

qDqD

qNqN
S

+
+=

⊥⊥

⊥⊥q (9)

and is hence independent of the magnitude of q. In
particular, it is therefore non-vanishing at small q. This can
quickly be seen to imply, through eq. (6), that the velocity
variance diverges exactly as in Caflisch and Luke19. In other
words, Caflisch and Luke19 fail to take into account the
hydrodynamic interaction between concentration
fluctuations. If nonlinearities are to change this, they must
leave the noise relatively unaffected while causing the
relaxation rate (D⊥q⊥

2   + Dzqz
2  in the linearized theory) to

become nonzero at small q. This, if it happens, would be
called ‘singular diffusion’ since diffusive relaxation rates
normally vanish at small wave number. We shall see below
that this does happen, in a substantial part of the parameter
space of this problem.
  More precisely, we have been able to show22,23, in a fairly
technical and approximate ‘self-consistent’ calculation
which I shall not present here, that the behaviour once the
advection term is included depends on the temperature
anisotropy parameter K defined in eq. (8). If K = 0, i.e. if the
noise and the diffusivities happen to obey a fluctuation–
dissipation relation, then the static structure factor is totally
unaltered by the advective nonlinearity, and therefore the
velocity variance diverges as in Caflisch and Luke19. If K is
larger than a critical value Kc, i.e. the fluctuations injected
by the noise are substantially more abundant for wave
vectors in the xy plane than for those along z, then there is a
length scale ξ such that S(q) → 0 for qξ << 1 with q⊥ >> qz.
Thus the velocity variance is finite, and independent of
system size L for L > ξ. We call this ‘screening’, and the
regions K > Kc and K < Kc as the screened and unscreened
phases, respectively. A schematic phase diagram is given in
Figure 2. However, ξ diverges as K → Kc. For K < Kc,
according to preliminary calculations, the long-wavelength
behaviour is the same as that at K = 0, although a detailed
renormalization-group calculation to establish this is still in
progress.

⊥
ij

z
ij δδ  and 
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  Let me try to provide a qualitative understanding of these
results. The basic question is: how does an imposed long-
wavelength inhomogeneity in the solute concentration
decay in a steadily sedimenting suspension? It can, of
course, always do so by hydrodynamic diffusion. In
addition, it can scatter off the background of chaos-induced
fluctuations, which I will call noise-injected fluctuations
(NIF). This scattering is best thought of as the advection of
the imposed inhomogeneity by the velocity field produced
by the NIF. So consider two cases: (a) where the NIF has
wave vector predominantly along z, and (b) where the wave
vector is mainly in the xy plane. In (a), the induced flow has
a z-velocity which alternates in sign as a function of z. The
advection of the imposed inhomogeneity by this flow will
concentrate it further, in general, thus enhancing the
perturbation. In case (b), i.e. when the NIF has variation
mainly along xy, the resulting z-velocity will alternate in sign
along x and y, which will break up the inhomogeneity. Thus,
a noise with Fourier components only with wave vector
along z would give a negative contribution to the damping
rate due to scattering, while one with Fourier components
with wave vector only orthogonal to z would give a purely
positive contribution. In general, it is thus clear that this
mechanism gives a correction to the damping rate
proportional to N⊥ – Nz (assuming, for simplicity, the same
diffusivity in all directions). In addition, the long-ranged
nature of the hydrodynamic interaction means that no
matter how long-wavelength the NIF, it will produce
macroscopic flows on scales comparable to its wavelength
(and instantaneously, in the Stokesian approximation),
hence the singular diffusion.
  In addition, we predict the form of static and dynamic
correlation functions of the concentration or the velocity
fields in detail, in the screened and unscreened phases as
well as at the transition between them22,23. Very careful
experiments, in particular some light scattering measure-
ments at very small angles, are currently underway to test
our predictions.
  We close this section by remarking that ours is not the
only candidate theory of the statistics of fluctuations in
zero Reynolds number fluidized beds. An earlier, nominally
more microscopic approach58 had some similar conclusions;
we, however, disagree with that work in several details.
There are some who criticize the experiments of Segrè21

because they are done in narrow cells which could
introduce finite size effects. There is also a very qualitative
set of arguments59 based on an analogy with high Prandtl
number turbulence; it is unclear at this stage whether that
work is a recasting of our theory of the screened phase or
distinct from it.

Conclusion

This review has tried to summarize experimental and
theoretical work in the area of suspension hydrodynamics,

from the point of view of a physicist interested in
nonequilibrium statistical mechanics. The major aim has
been to convince condensed matter physicists in India that
this is a field which merits their attention. Apart from listing
a large number of general references, I have tried to support
my case by describing some problems on which I have
worked, which have their origins squarely within
suspension science, but whose solutions required all the
machinery of statistical mechanics and used in a crucial way
the fact that the systems concerned were not at thermal
equilibrium. I hope this article will win some converts to this
wonderful field.
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