494 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 4, NOVEMBER 1999

New Algorithms for Learning and
Pruning Obligue Decision Trees

Shesha Shah and P. S. Sastgnior Member, IEEE

Abstract—In this paper, we present methods for learning and A decision tree is a classification rule represented as a binary
prurllingt;' obl(ijq#e detcisi?? tr?es. YVe prflopoze a r?‘?w func_tiontrf]Of tree in which each nonleaf node is associated with a decision
evaluating different split rules at each node while growing the uapli " ot : . ;
decision tree. Unlike the other evaluation functions currently used rule' (or a “split rule Qr a "test’) of the forn’fZ(X) > 0;. This
in literature (which are all based on some notion ofpurity of dec_ldes whether a given feature.vecfé.rWIII go to the left
a node), this new evaluation function is based on the concept OF right subtree. Each leaf node is assigned a class label, and
of degree of linear separabilityWe adopt a correlation-based all the patterns landing in that node are to be classified in that
optimization technique called the Alopex algorithm for finding ¢lass.
thr? spllit rulithat optimizes OLJrevaIuatiorll furl;cl;tion c’i}lt efach nolde. Given a sample of classified patterns, most learning algo-
The algorithm we present here is applicable only for 2-class
problen%s. Through Fv)ampirical studies,F\)/I\C/)e demonst?/ate that our rlth_ms construct a deC|S|0n_tree by_ recursively _determlnmg
algorithm learns good compact-decision trees. split rules at each node while growing the tree in top-down

We suggest a representation scheme for oblique decision treesfashion [1]-[4]. Let F denote the family of possible split
that makes explicit the fact that an oblique decision tree repre- ryles, and letF (-, S*): F — R be an evaluation function
sents each class as a union of convex sets bounded by hyperplane{:‘f.|at measures the goodness of afiyc F given a subset

in the feature space. Using this representation, we present a e Lo . .
new pruning technique. Unlike other pruning techniques, which of classified patterng®. Different algorithms make different

generally replace heuristically selected subtrees of the original choices of 7 and F(-, -).
tree by leaves, our method can radically restructure the deci- One popular choice faf is rules of the formz; > 8 where

sion tree. Through empirical investigation, we demonstrate the z; is theth attribute (or feature) value artlis a constant.
effectiveness of our method. Decision trees obtained by using this class of split rules are
Index Terms—Learning, linear separability, optimization, tree known asaxis-parallel decision treebecause here, each class
induction, tree pruning. region in the feature space is represented by a union of hyper-
rectangles with sides parallel to feature axes.
A more general class contains rules of the form

" 1 a;z; >0, which gives rise to the so-called oblique

- . 2
DECISIQN—tree classifiers have been popular in pattefigision trees [3], [4]. Here, each split rule is characterized by
recognition, concept leaming, and other Al branch&fe parameters,;, as,- -, a,, andé. Oblique decision trees

[1]. They enable a divide-and-conquer strategy t0 b€ &pgect polyhedral partitioning of the feature space. In general,
plied to classification problems, and they enable contexfien classes are separated by a piecewise linear surface,
sensitive feature-subset selection to tackle hlgh-dlmensmnalbtmique splits result in more compact decision trees. This is
problgms. Decisior_1-tree learning started receiving increasgéicause' using axis-parallel splits, we need to approximate an
attention after Quinlan’s work on ID3 [2] and the CART,pitrary hyperplane with a staircase-like structure.

methodology of Breimaret al. [3]. _ Almost all of the decision tree algorithms in literature use
In this paper, we present a new algorithm called the Alopey, avaluation functionf'(-, §*), which is a measure of the

Perceptron Decision Tree (APDT) algorithm for leaming geqree of impurity of children nodes resulting from a sblit.
decision tree given a set of (preclassified) training patterng, ¢ is a rule that split§" into S* and S*, such that each
This is a top-down, tree-growing algorithm, and its maig¢ them contains an approximately equal number of patterns
novel feature is a new approach to evaluating goodnessQfiy, 4| classes will be judged to be greatly inferior to a split
various possible split rules at every node. We also presgfjfe that results irs* andS*, each predominantly containing
a new technique for pruning learned decision trees that JSyems of one class. While such impurity measures may
often.needed in order.to mltlgate problems pf overfitting. A, good for axis-parallel trees, they are not very good for
algorithms presented in this paper are applicable only for gpjique trees, especially in 2-class problems. This is because
clz_ass p.attgrn—recogmuon problems. In the final section, Wfe can use a hyperplane as a split rule, and a single split can
briefly indicate how these techniques may be extended igmpjete the classification of any subset of linearly separable
handle multiclass problems. patterns. This situation is illustrated in Fig. 1. For a 2-class
problem in®? with the class regions as shown, consider the

I. INTRODUCTION

Manuscript received June 12, 1997; revised April 8, 1999. two hyperplane splits, as in Fig. 1(a) and 1(b). The split of
The authors are with the Department of Electrical Engineering, Indian

Institute of Science, Bangalore, 560 012 India. 1A node is calledpure if all the training patterns landing at the node are
Publisher Item Identifier S 1094-6977(99)08193-6. of the same class.

1094-6977/99$10.001 1999 IEEE

SHAH AND SASTRY: NEW ALGORITHMS FOR OBLIQUE DECISION TREES 495

There are some interesting geometric characterizations of a
set of feature vectors (ilR") that are not linearly separable
(see [5] for a detailed account). For the purposes of the
algorithm presented here, we note the following. Suppose
we run the Perceptron algorithm over a training setof
pattern vectors. In the Perceptron algorithm, at each iteraton
we classify the next pattern (feature vector) using current
hyperplane, and if the classification is wrong, then we update
the hyperplane using that pattern. When theSsistnot linearly
separable, the algorithm goes into an infinite loop. However,
, not all the patterns in the training sét need participate in

) (b) updating the hyperplane infinitely often. In general, there is
Fig. 1. Split rule based on (a) purity measure versus (b) separability measua'e.smjset of vectors frorg Ca”eq “pqnseparable" pattems of
SCthat update the hyperplane infinitely often, while the rest
of the patterns ofS update only a finite number of times
Fig. 1(a) results ins* and S'-, each having a much higher[5 Theorem 6]. For our algorithm, we take the number of
degree of purity compared to those in Fig. 1(b). However, tWgynseparable patterns o as an indication of the degree
more hyperplanes for each of the children nodes are needgdinear separability ofS. We can estimate the number of
in Fig. 1(a) to complete the classification, while only on@gsnseparable patterns of a set of training pattéras follows.
hyperplane is needed in each child for Fig. 1(b), as 6th \ye run the Perceptron algorithm of for a fixed number
and S* are linearly separable here. Because oblique decisign iterations, keeping a count of the number of times each
trees can realize arbitrary piecewise linear separating surfaqgﬁtem participated in updating the hyperplane. At the end of
it seems better to base the evaluation functita, 5°) on the the algorithm, if for instance) is the maximum count, we
degree of separability of** and.5*- rather than on the degreeghen take all the patterns that participated in updation at least
of purity of 5% and S*. In this paper, we propose a NeW, M times as nonseparable patterns, whetel is a parameter
function that evaluates a split rule based on the “degree (‘iﬁ our algorithm, we take = 0.6). What we need for our
linear separability” of the children nodes resulting from thgqgorithm is the number of such nonseparable patterns. of
split rule. We use ideas from [5] to characterize the degree 019
linear separability. A. New Function to Evaluate Split Rules

Here, in our tree-growing algorithm, we employ a . .
correlation-based optimization technique called Alopex [6]f Let, S* be the sample set at nodewith n, patterns.
he split at nodet is parametrized by weight vectd¥ —

Empirically, the Alopex algorithm is found to be effective in (ni1) N
many neural networks and other optimization problems [wo, wy, -+, wn) € R : Letth = (371’372;"'%%) eR
We show that using our algorithm, we learn smaller decisidif @ given feature vtector;l L&t = {X € 573, wiwi +
trees with better classification accuracy than is possible witp > 0} and 5 = 5% — 5%. WhenW is the split rule at;,
other standard methods S* and S*~ are the pattern-sets that go into the left and right
. ; _|qt — |Gt

The rest of the paper is organized as follows. In Section fifildrent; and, of nodet. Letn,, = [S"| andn,, = [S™|.
we present the complete details of the APDT algorithrirEt 75Px antdmf’h E)e the number of nonseparable patterns
Through simulation results presented in Section 111, we shdly the setsS™ and 5%, respectively. _ _
that the APDT algorithm learns compact and accurate decisior®Ur &M is to have an evaluation function for split rules
trees. In Section IV, we present a new pruning techniquté‘at minimizes nonseparable patterns in children nodes. When
along with some simulation results to show its effectivene<d Child is linearly separable, we prefer the split that puts more
Section V presents discussion and conclusions. patterns in that child, preserving linear separability. To do this,

define an evaluation functiof'(-, -) as

Il. AL?}ORITHM FOR LEARNING OBL.IQUE DEC.ISION TREES | F(W, 5" = R {11 e e I ne —mng, 11]2}
Consider a top-down, tree-growing algorithm for learning M us ny
oblique decision trees. Here, the main computation (at each M
node) is as follows. Given a training sample of classified +(1-0L)(1-1L)E (1)
patterns, S = {(Xi1,C1),(Xs,Cs), -+, (X, Cn)} where ~ ~
X; = (1, @2, ,2in) € R* is the feature vector, and B
C; € {0,1} is the class label of théth sample, we want Where
to determine the best hyperplane to subdivide the sample atV parameter vector of the hyperplane;
that node. If the sample is linearly separable, then of courseS* the set of patterns at nodeand n, = |S*| (the
the best hyperplane is the separating hyperplane. However, in number of patterns irf!);
general, the pattern-set given to the algorithm at most nodes:,, |St|, whereS* is the set of a pattern at left child
will be nonseparable. As discussed in the previous section, we of ¢ obtained by splittings* using W;

want to base our evaluation of hyperplanes on the degree of,, |S*|, whereS*- is the set of a pattern at right child
separability of resulting children nodes. of ¢ obtained by splittingS* using W,

496 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 4, NOVEMBER 1999

nspy,, number of nonseparable patternsdh and S5t-; Here
nspy, Which is calculated using the Perceptron altorithm 1
for a fixed number of iterations as explained earlier; p(k) = AE(R) (4)
E o (((nspn +n500,)/n0)(1/2) — (e /) (e f10))): Lo (500
R minimum value ofE = (1/2ny). I'(k)
If nsp, =0, thenl; =1, elsel; = 0. whereT'(k) is a positive “temperature” parameter, atd (k)
If nsp;, = 0, thenl, =1, elsel, = 0. is the changes in the objective functidh over the previous
M > 1 is a constant (we have usetd = 4 in our two iterations
simulations).
In (1), when any of the children is linearly separable, only AE(k) = E(W(k)) — E(W(k - 1)).

term A will contribute. But when both children are not linearly]])
separable,F'(-,-) is given only by term B. From (1), we The temperaturd’ is updated at every¥ iterations (whereV

observe the following. is a parameter of the algorithm) using the following “annealing
* When either of the children is separable (for instance ?fchedule
t, is linearly separable, i.ensp;, = 0), then (W, S*) = 5 k=t o .
(e, /ne)(R/M). That is, by minimizingf(-,-), we de- 7y —) ¥ > JAE(K)|, if k is multiple of N (5)
crease the patterns falling in right chitg. K =k—N _
» When both of the children are linearly separable (i.e., =T(k-1), otherwise.

nsp, = 0 andnsp, = 0), F(W,S*) = 0, which is @ The aigorithm is initialized by randomly choosirig’(0)
global minimum. _ , and obtainingi¥ (1), done by makingr;(0) take valuest1
* In the case in \ivh|ch both children are not I|nearl)émd_1 with equal probability for each. From (3) and (4) it
separable F'(W, 5%) = ((nsp;, + ”Sptr)/”t)((ll/?) ~ is clear that at each iteration, the algorithm makes a random
(n, /n4)(ns, /n1)). By minimizing F(-, §*), we minimize coice of directionX (k) = [x1(k),x2(k), - -, 2, (k)], which
nonseparable patterns in both children. But here we hay&omputed in a distributed fashion and the algorithm makes a
an additional product terni(1/2) — (ny, /ne)(n:./n1)). step of constant size along that direction. Note that eagh)
which ensures that a split that puts all patternsiatone g ca|cylated independently basedik). If over the previous
child node will not result. Also note that in term Ain g jterationsE has decreased, then eachis changed in the
(1) will ensure that the value of term A is always smallegame direction as in the previous iteration with a probability
than that of term B. greater than 0.5. How fast these probabilities go to zero or one
We use the abové'(-, -) function as an evaluation functionwith increasing magnitude ak £ depends on the temperature.
in our APDT algorithm. In this algorithm, in order to findFrom the annealing schedule given in (5), it is clear that the
the split rule at each node that minimiz&%-,-), we use the algorithm has some self-scaling property. This is because, in
Alopex optimization algorithm, which is described in the nexfieterminingp(k), essentially we are comparing curref

section. with its recent averaged value. The free parameters of the
. algorithm ares, the step size, anfy (the number of iterations
B. Alopex Algorithm over whichAF is averaged to get temperature in an annealing

To learn the best hyperplane, we need to mininfize, S*) schedule). The initial temperatu#®0) can be arbitrary. The
at each node. From the definition ofF(-,-) it is clear that Vvalue of N should be chosen so that sufficient averaging of
given a sampleS* at nodet and a weight vectoiV of AF takes place. The algorithm is not very sensitiveoas
the hyperplane, we can calculafé(W, St). However, it is long at it is not too small. The parameteris step size in
not possible to get gradient information directly. We needPdatingw;. The algorithm is not very sensitive toas long
to estimate the gradient or use some algorithm that does Aé&tit is small. Also, it is observed empirically that reducing the
require gradient information. Here, we use the Alopex a|g(yalue of§ toward the end helps. For a multidimensional input
rithm [6], which does not require gradient information. BelowPattern with each attribute having values in different ranges,
we describe the Alopex algorithm for a general optimizatioformalizing pattern vectors improve learning accuracy and

problem, following [6]. learning rate. This problem also can be handled by choosing
Let E:R" — R be the objective function. We are intereste@ different value ob for each component; in Alopex.
in finding aW = (wy, we, -, w,) € R at which £ attains

a minimum. LetW (k) be the estimate of minimum dith C. APDT Algorithm for Decision-Tree Induction

iteration. Then,W (k) is updated as Our APDT algorithm consists of finding the split rui@

wi(k +1) = wi(k) + 6z;(k), 1<i<n (2) at each node to minimize F(W,S,) [given in (1)] using
the Al Igorith Section 1I-B). Th lete APDT
wheres is the step size, anli (k) = [(k). 22 (k). - -z (K)] e Alopex algorithm (see Section 11-B). The complete

. . i . algorithm is given in Table I.

is a random vector withy; (k) € {+1, —1},Vi,k,, having the T 566rithm grows the decision tree by recursively calling
following distribution growTred) procedure. At each nodegrowTreeis called with
(k) = {xi(k — 1), with probability p(k) 3) a subset of training samplek, which fall into that node. We

| —z:(k—1), with probability1 — p(k)" use the Alopex algorithm to find the bedt at that node. In

SHAH AND SASTRY: NEW ALGORITHMS FOR OBLIQUE DECISION TREES 497

TABLE |
PART | oF CoMmPLETE APDT ALGORITHM

APDT Algorithm
Input : Sample S = {(X,-,c;)}i=l’_,_,m vhere X; € R* and ¢; € {0,1}
Output : pointer to an oblique decision tree
begin
Root = growTree(S);
return(Root);

end

Procedure growIree(S?)
Input : Sample at node ¢, S°
Qutput : pointer to a sub-tree

begin

1. Initialize hyperplane parameters, W{0), to a plane which is perpendicular to
a vector joining any two patterns, chosen randomly from S', of different

classes. Let W*=W(0).
2. Calculate F* = F(W?*,5%) using equation (1).
3. Initialize the Alopex algorithm (see Section 2.2).

4, For k=2,---,AlolTE
begin
- get hyperplane parameters, W(k), by updating W(k—1) using
Alopex algorithm
- Calculate Fy = F(W(k),S'), which returns values of nsp; and
nspy,. If S% (resp. S*™) is linearly separable, then
separating hyperplane W% (resp. W) is also returned.
- 1f Fy < F* then assign F™* + F; and W* « W{(k)
-~ If F*=0 then exit to step 5.

end

6. Make node t, and assign W; ¢ W* as the split rule at node !.

each iteratiork of Alopex, we obtainS,;, andS,_ from S;, us- while running the Perceptron algorithm to count nonseparable
ing the current splitVy. We then run the Perceptron algorithnpatterns for that child. This is a kind of one-step look-ahead
for a fixed number of iterations ofi;, and .S, to obtain the while recursively growing the tree. The APDT algorithm is
number of nonseparable patternsp;, and nsp, in them, a stochastic algorithm because of Alopex. On every run it
respectively. Using these values, we calculdévy, S;), gives a different tree, which is consistent with the training set.
which is used in the Alopex algorithm to updal®.. The For this reason, we can use the “multiple trees” approach for
Alopex algorithm runs for a fixed number of iterations. Thelassification [3].
same call to the Perceptron algorithm that returns the number
of nonseparable patterns also returns the separating hyperplane
W, (respectively,W,) if S;, (respectively,S,) is linearly We present some of the results of our empirical studies
separable. of the APDT algorithm both on synthetic problems and on
In APDT algorithm growTred-), a routine is called re- some Machine Learning databases from UCI ML Database
cursively only when the sample at that node is not linearhepository [7].
separable. If any child node was linearly separable, it would All our synthetic problems are two-dimensional (2-D) and
have been detected by th&-, -) routine in step 4, and declaredthe feature space is the unit square®A. For training, a
as a leaf node in step 7. Thus, in the main routine of thHixed number of patterns are generated randomly using uniform
APDT code, we assume that sample is not linearly separabistribution. To evaluate performance of learned decision tree
(which can be easily detected before calliggowTred:). we generated another test sample using uniform distribution.
Also note that in step 4, when we hav& = 0 we have In the APDT algorithm, we run the Perceptron algorithm for
found a hyperplane that gives linearly separable children. Thaax {300, |S*|} iterations and the Alopex algorithm for 500
results in adding one or three nodes for each child as gividerations. For the Alopex algorithm, we have takesa: 0.05,
in step 7, because the separating hyperplane for a lineaNy= 10, and 7(0) = 1000. The results presented from the
separable child node (when it is not pure node) is already fouA®DT algorithm are without any pruning. We compared the

lll. SIMULATION RESULTS

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 4, NOVEMBER 1999

TABLE |
ParT Il oF CompLETE APDT ALGORITHM (Continued)

. Let §% = {X; € S4W] - X; >0} and S* = {X; € S{|WT - X; <0}.

If all patterns of S% have same class
then Pure;, = TRUE

else Purey, = FALSE.

If all patterns of S* have same class
then Pure;, = TRUE

else Pure, = FALSE.

. o If (nspy, #0) then

t; = growTree(Sh)
else
begin
If (Purey, = FALSE) then
assign W; as split rule at {;, and attach appropriate
class labels to left and right children of i;.
else
assign appropriate class label to ;.

end

e If (nsp;, # 0) then

t, = growTree(S)
else
begin
If (Pure;, = FALSE) then
assign W as split rule at {,, and attach appropriate
class labels to left and right children of i,.
else

assign appropriate class label to {,.

The OC1 algorithm [4] is similar to CART-LC, and it also
learns obliqgue decision trees. We have used Murthy's [4]
programs for simulating OC1, and this program includes 0-SE,
CC pruning. In our simulation, none of the methods employ
any explicit feature-subset selection.

Performance of various algorithms is compared by evaluat-
ing the learned decision trees in terms of accuracy and size.
Accuracy is measured by the classification error made on the
test sample. The size of a tree is characterized by number of
nodes and the depth of tree. A good tree is one with high
accuracy, few nodes, and less depth. We give average (over
five runs) and best results for all the problems. Note that in
CART-LC, OC1, and the APDT algorithms we get different
trees with different random seed, whereas for ID3 and CART-
AP, we get only one tree. Hence, for ID3 and CART-AP, the
average tree is same as the best tree learned.

A. Synthetic Problems

Shown in Fig. 2 are three synthetic 2-class pattern classifi-
cation problems over [0, 1k [0, 1]. For each problem, we
generated 1000 training samples and 500 test samples using
uniform distribution. The simulations are done under no-noise
conditions. Table Il gives the best trees obtained (in terms of
accuracy on test sample) and Table Il gives average results
(over five runs) for each algorithm.

B. Real-World Problems
In addition to the six synthetic problems given above,

end we also tested our algorithm on two problems from UCI
machine-learning databases, the IRIS problem, and the WINE
classification problem.

1) IRIS Problem: This domain contains three types of
plants: Iris-setosa, Iris-versicolor and Iris-viginica. Each plant
: . .) is characterized by four real-valued attributes (petal width,
APDT algorithm with four other algorithms: ID3, CART-AP petal length, sepal width, and sepal length). It is known [11]

and CART-LC, and OCL1. X o
ID3, due to Quinlan, is a popular method for disco er.nthat the class Iris-setosa is linearly separable from the other
, A ul ! bopu IScov 'r%yo, and that and the other two are not linearly separable.

cla§5|flcat|on rules from a ?a”.‘p'e of patterns over NOMINGe consider the nonlinearly separable problem of determining
attribute space [2], [8]. This is extended to handle linear : T
whether or not the given plant is Iris-viginica.

attributes by Fayyad and Irani [9], and we use this exten3|on.Since the domain consists of 150 patterns, we divide the

ID3 uses an impurity-based evaluation function motivated ;) .- .
. atterns into two parts: a training set with 120 patterns and a

by some information theoretic considerations, and it does an . A
: . est set with 30 test patterns. In the APDT algorithm, the value
exhaustive search at each node to come out with the best ax

parallel split rule. We used Utgoff's progr&fi0] to simulate SFfree parameters is chosen as given in Section Il except for

; : . : - 6 = 0.5. The simulation results are given in Table IV.
ID3, which also includes pruning to avoid overfitting. P i
. 2) WINE Classification ProblemThese data are the result
CART is another popular approach for inducing decision,

.) -0f a chemical analysis of win rown in th me region
trees. Here, we termed the CART algorithm for learning ax%— achemical analysis o es gro the same region but

parallel decision trees as CART-AP, and the algorithm f?

learning oblique decision trees as CART-LC. Both algonthr;}s,/pes of wines, and these are provided as the values of 13

use Gini impurity measure [3] for evaluating split rules . : . s
each node. CART-AP does an exhaustive search to find {eéall valued attributes. We consider the problem of classifying

bt ais-parall <pi ot sach node, whle CART-LC usdh [P of e oz pposea o e srerv,
a perturbation-based method [3]. In CART simulation, we

. - Ihto two sets of 103 and 75 patterns and use the first one as
employed 0-SE, CC pruning [3] on the learned decision treFr;aining and the second as a test set. Table IV summarizes the

2This program for ID3 does not give training and test accuracy separate'i?.suns' In the APDT algor'thm* W('E had chosen a step size of
So Table Il has the same values in corresponding columns. 6 = 0.1. The patterns are normalized to take value from (O,

8. return(?)

end

e quantities of 13 constituents found in each of the three

SHAH AND SASTRY: NEW ALGORITHMS FOR OBLIQUE DECISION TREES 499

Problem 1 Problem 2 Problem 3

_ x> 0.5 =in(2Tx)+0.4
* Class 0 o2 Xl

18]

Fig. 2. Synthetic problems 1-3.

TABLE I

BesT ResuLTs (OvER FIVE RuNS) FOR ProBLEMS 1-3

Problem 1 Problem 2 Problem 3
Classifier || % Accuracy | N | Depth | % Accuracy | N | Depth | % Accuracy | N | Depth

Trn | Tst Trn | Tst Trn | Tst

APDT 100 | 99.8 | 3 3 100 | 100 | 5 3 99.8 {993 | 7 4
0C1 100 | 99.6 | 13 5 99.9 | 98.6 |18 6 99.92 | 99.3 | 10 4
CART-LC || 99.9 | 996 | 7 4 99 | 97.2 [13 6 99.84 | 99.4 | 10 4

TABLE 11l
AVERAGE ResuLTs (OverR FivE RuNS) FOR PROBLEMS 1-3
Problem 1 Problem 2 Problem 3
Classifier % Accuracy | N | Depth | % Accuracy | N | Depth | % Accuracy | N | Depth
Trn | Tst Trn | Tst Trn | Tst
APDT 99.92 | 99.52 | 4.8 34 9996 {9984 | 5 34 9914|9852 | 7.6 4.2
0C1 99.35 | 98.8 | 11.6 5 98.5 (9756 |94 | 4.8 |[99.85|99.16 | 104 | 44

CART-LC | 99.76 | 99.28 | 7.4 4 98.94 | 96.04 | 13 56 |99.75| 99.0 | 13.8| 5.4

CART-AP | 100 | 99.8 4 3 98.7 | 97.2 | 14 6 99.88 | 97.1 | 54 8

1D3 100 100 3 3 97.4 | 974 | 22 10 972 | 97.2 | 83 12

1) by dividing each attribute by its maximum value from tha nonlinear separating boundary. Compared with the other
training set. tree-growing methods, it was observed that the best and
C. Discussion average tree learned by APDT is smaller and more accurate.

Out of three synthetic problems we studied, the first twbhis justifies the motivation we had given earlier regarding
had piecewise linear separating surfaces, and Problem 3 dadree of separability being more relevant than degree of

500

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 4, NOVEMBER 1999

01

Problem 1

02

Problem 1

03 04

05 06
x1

06

07 08

H,
Y
H, ¢,
Y
H3 0
Y
¢, Co
(@)
Hl

/\

(b)

Fig. 3. Best tree learned for Problem 1 (a) APDT algorithm and (b) OC1 algorithm.

learned tree. Also, it is clear from the tables that axis-parallel
trees are a poor choice for representing general classifiers. The

TABLE IV
AVERAGE ResuLTs (OvER FiVE Runs) FOR ML PROBLEMS
IRIS WINE
Classifier | % Accuracy | N | Depth | % Accuracy | N | Depth
Trn | Tst Trn | Tst
APDT 99.66 | 100 |3.4| 24 100 19758 | 3 2
0OC1 975 | 100 [2.0} 2.0 [9633]96.14|3.0] 28
CART-LC | 95.83 | 97.17 | 2.0 | 2.0 93.0 | 95.79 | 3.8 3

APDT algorithm takes approximately twice the time taken by
OC1 or CART-LC in all problems.

It is empirically observed that on different runs, the APDT
algorithm learned trees that do not vary much in terms of size
and performance, unlike methods such as CART-LC (compare
the best versus average performance). This may be due to the
fact that we use the Alopex algorithm for finding the best split
at each node, and that this algorithm is known to be a very
robust, general-purpose optimization technique [6].

Among all the other algorithms that we tried, OC1 gave
the best results in terms of both accuracy and size of the tree
learned. Hence, in Figs. 3 and 4 we compare the best tree
learned by the APDT and OC1 for two synthetic probldms

purity, especially in problems with piecewise-linear separatinghe (a) pictures in Figs. 3 and 4 show the tree learned by the
boundaries. It should be noted that in the APDT algorithm, w&PDT, and the (b) pictures show the tree learned by OCL. In
did not employ any pruning, while the results presented for

all the other algorithms were those obtained after pruning théThe best tree is in terms of accuracy on the test sample.

SHAH AND SASTRY: NEW ALGORITHMS FOR OBLIQUE DECISION TREES 501

Problem 2

0 01 02 03 04 05 06 07 08 09 1
x1

@)

Problem 2

H3 1

) / H\ / \
ﬁ /H‘*\‘ G G G
0 01 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1
“ C, Cy

(b)
Fig. 4. Best tree learned for Problem 2 (a) APDT algorithm and (b) OC1 algorithm.

the figure, each split rule in the decision tree is indicated ost standard pruning techniques achieve this by replacing
the name of the corresponding hyperplane, and it is shown selected subtrees with leaf nodes [3], [12]. In this section, we
left side of each figure. For Problem 2, the best tree learned pmesent a new class of pruning techniques that are capable of
OC1 has 18 internal nodes, and it is complicated. Therefore dffecting a more radical restructuring of the learned tree.

Fig. 4 we give the smallest tree learned by OC1, the accuracyn classifying a pattern using a decision tree, we follow
of which is much lower (985% on the training set and 974% path from the root to a |eaf node SUCh that the pattern
on the test set). Figs. 3 and 4 show that the APDT learns exagisfies all the conditions in the nodes along the path. Hence,
poundaries of piecewise linear separators where they exist, gnd, oblique decision tree, each such path would represent an
in general, the trees learned are more compact and accurgigesection of half spaces, and thus in a decision tree, each

The general structure of such a network is shown in Fig. 5.

IV. DECISION-TREE PRUNING AS A Each node in the first layer of the network (not counting the

BOOLEAN-VECTOR LEARNING PROBLEM input layer) represents one hyperplane. To fix the notation,

Most top-down, decision-tree induction methods, beirlgt M denote the number of first-layer units, and let the
greedy algorithms, generally suffer from the problem oth unit represent a hyperpland; parametrized byW; =

overfitting. Pruning is a well-known method to handle thifwio, -, win] € RV 1 < i < M (we are assuming

[3]. The objective of pruning is to restructure a learnedn n-dimensional feature space). On an input patté&n=
decision tree so that its accuracy on test data is improvéd;,zs,---,z,] € R, the output of theith unit isy; = 1 if

502 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 4, NOVEMBER 1999

Even though there are a finite number of possiblevectors
(as eachv,; € {0,1}Vi,1 < ¢ < L), an exhaustive search
OR would be very expensive computationally for most problems.
In what follows, we briefly discuss two stochastic algorithms
for learning these Boolean vectors. The first algorithm is based
AND 5 on learning automata (LA) models [13], and the second is
based on genetic algorithm (GA) models [14].

Layer 3

Layer 2

Vii(t
A. LA Pruning
Hyperplanes The LA pruning algorithm is given in Table V. At each
iterationt, the algorithm updates probabilitieg;(¢),1 < £ <
L,1 <4< M. All of these probabilities are initialized to 0.5.
At each iterationt, the algorithms makes a random choice
Inputs of Boolean vectord/,(t) based on these probabilities. That
X X0 X is, Proljue;(t) = 1] = qu(t), V4, i. The resulting network is
Fig. 5. Three-layer feedforward network representation. used to classify the next sample pattern, and the correctness
or otherwise of this classification is used to update the prob-
8Pi|ities. The parametek controls the stepsize used in the
deating, and it should be sufficiently small. This algorithm
Is a special case of a general LA algorithm [13]. The general
wherev; € {0,134, 1 < £ < L. The output of the'th second- ?Igorithm .is known to converge to parameter _/alues that are
S ocal maxima of expected value ¢f calculated in step 7 of

layer unit isa, = 1 if 3, = 1 for all ¢, such thatv, = 1,
)the algorithm. Hence, one can expect this pruning technique
otherwisea, = 0. The third layer consists of a single OR unit . .
tR result in compact trees with good accuracy.

which is connected to all second-layer units. Its output, whic
is the output of the network, is one if the output of at least .
one second-layer unit is one. B. GA Pruning
It is easy to see how any decision tree can be represented aSince our pruning algorithm amounts to learning parameter
such a 3-layer network. The first layer consists of all distingilues, all of which are Boolean, the problem is well suited
hyperplanes (split rules) at all nodes of the decision tree afut application of genetic algorithms [14]. In GA pruning, we
also their complements. The second layer consists of as maggd the classification accuracy on the sample achieved with
nodes as there are leaves in the decison tree, labeled class specific set of parameter values as the fitness function
1. Each second-layer unit is connected, with weight one, Yalue for that parameter setting. We used standard crossover
all hyperplanes in the first layer that appear on the path frogand mutation operators.
the root to the leaf node corresponding to this second-layer
unit. .AII the other coqnections frpm that secondjlqyer unit 8 Simulation Results
the first-layer units will have weight zero. Now it is easy to)) B)
see that output of the network will be one on all patterns that!n this section, we present some empirical results with our
would be classified as class-1 by the decision tree. pruning technique and discuss the utility of the 3-layer network
We can use this network representation for pruning so{ructurg for prur_ling decision trees. We also shqw that both
decision tree as follows. We fix all the first-layer units s@Ur Pruning algorithms can learn a good tree even if the sample
that they represent all distinct hyperplanes that are pres&fgd is corrupted by classification noise.
in the learned tree and also all the complements of theTO test the pruning technique, we have selected Problem
hyperplanes. This fixes a value 8f and allW;,1 < i < M 2, discussed in Section IlI-A. We have taken the |.n|t|al trees
in the first layer. We can fixl (the number of second- aS leamed by OC1 and CART-LC algorithms (without any
layer units) heuristically based on the pruning expected. TREUNING) and compared the results obtained using our pruning
value of L decides the maximum possible number of pat@gorlfchms with those obtained using the standard CC pruning
ending in class-1 leaves in the final pruned tree. Now prunirtl%Ch”'qUé- These results are shown in Table VI. For each
is viewed as learning the boolean vectdfs,1 < £ < pruning technique, the table shows the percentage accuracy
L. Any specific value for each¥, would represent one (on both training and test sets) and the size of the Iearneq tree
specific way of restructuring the learned tree (using only tH@ terms of number of internal nodes. From the table, it
hyperplanes originally learned). The goodness of any choie€asy to see that the pruning techmqueg that use our three-
can be assessed using a training set of patterns. Learﬂﬁ%?r feedforward netvyork structure consistently outperform
optimal V', vectors amounts to learning a way of choosin§j'€ Standard CC pruning.
and combining the hyperplanes in the original tree to improve
the accuracy of the learned tree. Such a pruning technique %a“ﬁ\s mentioned in Section _III-AI the_ APDT algorithm_learned the separating
effect a more radical restructuring of the original tree than thith reasen we are not tesing the pruning technidues o trees grown sing the
of simply replacing selected subtrees by leaves. APDT algorithm.

Layer 1

Z;;l wi;x; + wio >0 andy, = 0 otherwise. Let there bé&
units in the second layer, each of which implements a kind
AND function. The/th second-layer unit is connected to al
first-layer units through a weight vect®f; = [vs1ves - - - venr]

SHAH AND SASTRY: NEW ALGORITHMS FOR OBLIQUE DECISION TREES 503

TABLE V
LA PRUNING ALGORITHM

LA Pruning Algorithm

1. Initialize all the probabilities ¢;(0) and set w;; parameters to learnt

hyperplanes.
2. Choose uy;(t) € {0,1} at random based on g;(t),1 << L,1<i< M.
3. Get the next pattern (X(¢),c(t)) € S, from the training set.
4. Calculate output for each unit in first layer using

yi(t) _ 1, if 2]‘:0 w,'j.'lij(t) >0 (6)

0, otherwise
5. Calculate the output of second layer units using

0 1, if y;(¢) =1 for all i such that vg(t) =1,
273 =
0, otherwise

6. The final output of the network, Y (f), is

1, when any of the second layer unit outputs 1
Y () = ‘ (8)
0, otherwise

7. If (Y(t)=c{t)) then set A(t) =1 else F(t) =0

8. Update the probabilities as follows :
e for {=1,---,L,1=1,---\M

gt +1) = u(t) + M) (1 - gu(t)); if vt,«(t.)=1 o
qu(t)(1 — AB()); othervise

where 0 < A< 1 is a step size parameter.

9. if(g(t) has converged) then stop else set t=t+1 and goto 2.

Table VII shows results (percentage accuracy and size inFig. 6 shows typical learning curves for LA pruning and
terms of number of node¥) obtained using different pruning GA prunind. In these graphs, the error is with respect to the
techniques for Problem 2 when the training set is corruptedrrupted training samples, which is why, asymptotically, the
with unbiased classification noise (the percentage of noiegor rate is the same as the noise rate.
added is shown in column 2 in Table VII). From the results
in Table VII, it is easy to see that even after adding 15%
of classification noise, the final pruned tree is very accurate V. CONCLUSIONS

(note that the percentage accuracy of the final tree in thejn this paper, we have considered the problem of learning
table is calculated using uncorrupted samples). The last ty@cyrate and compact decision trees from a sample of preclas-
columns in Table VII compare the time taken by our pruningified pattern vectors. Most of the tree induction algorithms
techniques #.) with that needed for an exhaustive searchyrrently available follow the top-down recursive method. As
over all possible Boolean vector.,)°. discussed in Section |, the design of any algorithm for inducing

decision trees involves two issues: choosing an evaluation
5The time for exhaustive search is obtained by evaluating a fixed number
of Boolean vectors on the sample set and then extrapolating the time for the
total number of Boolean vectors to be considered. 6Each iteration in GA pruning corresponds to one generation.

504 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 29, NO. 4, NOVEMBER 1999

LA pruning

15% noise

% Training error
n
o\

No noise

0 L L L 1 1 i
0 20 40 80 80 100 120 140 160

iteration

Fig. 6. Error plots for LA pruning and GA pruning.

TABLE VI
CoMPARISON OFCC FRUNING, LA PRUNING, AND GA PRUNING FOR PROBLEM
2. L = 2 HAs BEEN CHOSEN FORPROBLEM 2 IN LA PRUNING AND GA
PRUNING, AND A = 0.003 HAs BEEN CHOSEN IN LA PRUNING. PROBABILITY
OF CROSSOVER ANDMUTATION IS 0.7 AND 0.03, RESPECTIVELY, IN GA PRUNING

DT growing | DT Pruning Problem 2
method method % Accuracy | N
Trn | Tst
0C1 NO 99.6 | 984 | 16
CC 99.1 1974 | 8
LA 99.4 | 98.8 | 4
GA 996 | 998} 5
CART-LC NO 100.0 | 99.6 | 8
CC 99.6 {984 | 7
LA 99.9 | 994 | 3
GA 100.0 | 99.8 | 4
TABLE VII

CoMPARISON OF CC PRUNING, LA PRUNING, AND
GA PRUNING ON PROBLEM 2 WITH NOISY SAMPLES

DT Pruning || % Noise | % Accuracy | N | tirq tesh
method Ten | Tst sec sec
NO 0 99.6 | 984 | 16 - -
CC 0 99.1| 974 | 8 - -
LA 0 99.4 | 988 | 4 | 94.4 | 236.2x10°
15 99.9 | 98.7 | 10 | 132.8
GA 0 99.6 | 99.8 | 5 | 376.5 | 175.9x10!¢
15 99.4] 99.0 | 8 | 327.6

GA pruning
50

a5t
40t
351
30 ’\ : 15% noise

0 nojse \

0 I I I I i I
0 5 10 15 20 25 30 35 40 45 50

Iteration

Section |, since each split rule in an oblique tree can be an
arbitrary hyperplane, it is better to prefer split rules that result
in children nodes having linearly separable subsets of patterns.

With this motivation, in this paper we presented an evalua-
tion function that rated split rules based on the degree of linear
separability of pattern-sets that go into children nodes resulting
from the split. We used a heuristic estimate of the number
of nonseparable patterns in a pattern-set to characterize the
degree of linear separability. We used the Perceptron algorithm
for estimating the number of nonseparable patterns, which is
justified by theoretical results in [5].

Having decided on the evaluation function, we need an
optimization algorithm to find the best split rule. For oblique
split rules, brute-force optimization is clearly impractical. Be-
cause we cannot explicitly calculate the gradient of evaluation
function with respect to parameters of split rule, we cannot use
any standard optimization technique. Algorithms like CART
and OCL1 rely on perturbing each of the parameters of the
hyperplane split rules individually several times to achieve
the optimization. In our method, we adopted the Alopex
optimization algorithm to find the best split rule. The Alopex
algorithm is well suited for our problem, as it does not
need any gradient information, and it exploits the correlation
between changes in parameters and changes in the objective
function values.

Simulation results show that the APDT algorithm learns
better trees in terms of both accuracy and size compared to
other oblique decision-tree induction methods. As discussed
in Section Ill-A, the APDT algorithm learns a very good
approximation to the optimal tree in problems with piecewise
linear separating boundaries. Even in problems with nonlinear
class boundaries, its performance is as good as or better than
that of OC1 and CART. The results also show that axis-parallel

function to quantify goodness of a split rule and choosing gfes are much poorer at representing piecewise linear class
optimization technique to find the best split rule at each ”O%undary compared to oblique decision trees.

Almost all of the decision-tree algorithms in literature evalu- The APDT algorithm presented in this paper can handle
ate split rules based on the degree of purity of children nodggly 2-class problems. Extending this approach to multiclass
resulting from the split. Thus, they prefer splits that resuiroblems requires further investigation. The most obvious
in children nodes that have pattern sets with predominantgtension is to learn one decision tree each, to separate one
skewed distributions of different classes. As we argued atass from all the rest. Thus, we need to learrdifferent

SHAH AND SASTRY: NEW ALGORITHMS FOR OBLIQUE DECISION TREES

505

decision trees for am-class problem. An alternate approacliurther attention from the point of view of designing robust,
would be to modify our evaluation function so that degreéecision-tree learning algorithms.

of separability now means degree of separability of the most
predominant class from all the rest. For example, given a
pattern set ofS% for estimating the number of nonseparable1
patternsnsp,,, we run the Perceptron algorithm with the aim
of separating the most predominant classSin from all the
rest. More empirical studies are needed to decide on the md&l
suitable extension to handle multiclass problems.

Apart from this issue of multiclass problems, there are man]
other extensions possible to the basic the APDT algorithnr.
Our evaluation function represents a first attempt at chara4]
terizing the notion of degree of separability. A better way
to characterize this notion would certainly help improve thgs)
performance of the algorithms. In our algorithm, we have not

addressed issues such as handling missing attributes, achiev'[gjg

dimensionality reduction through feature subset selection, etc.
However, such facilities easily can be incorporated in theEY]
APDT algorithm.

Most top-down, recursive-tree induction algorithms suffer
from the problem of overfitting, and pruning is a well-studied!®!
method advocated to handle this. Most pruning methodg
improve the generalization ability of learned trees by replacing,
with leaves, subtrees that do not contribute significantly 190
classification accuracy. In this paper, we also have presente
a general pruning technique that can effect a more radi?]ﬂ]
restructuring of the tree. The main idea is to represent the
decision tree as a specific, 3-layer feedforward network thiag]
allows one to pick a subset of all learned hyperplanes and
combine them appropriately so as to increase the accuracyjaj
the final tree. The pruning problem here amounts to learning
Boolean vectors that constitute the weights between first aﬁq]
second layers of the network. We have presented two specific
algorithms that can learn the correct Boolean vectors effi-
ciently. These pruning techniques, based on our representation
of the decision tree as a 3-layer network, can be applied to
decision trees learned using any tree-growing algorithm. T
algorithm we presented is applicable only to 2-class proble
Extension of this technique to handle multiclass proble
requires further investigation.

The pruning algorithms that we proposed are quite rob
with respect to classification noise in the given sample

REFERENCES

] R. R. Safavin and D. Landgrebe, “A survey of decision tree classifier

methodology,”|EEE Trans. Syst., Man, Cyberrvol. 21, pp. 660-674,
May 1991.

J. R. Quinlan, “Learning efficient classification procedures and their
applications to chess end games,” in R. S. Michalski, J. G. Carbonell,
and T. M. Mitchell, Eds.Machine Learning: An Atrtificial Intelligence
Approach vol. 1. Palo Alto, CA: Tiogo, 1983.

L. Brieman, J. H. Friedman, A. Ghnene, and J. St@lessification and
Regression Trees Belmont, CA: Wadworth, 1984.

S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of
oblique decision trees,J. Artif. Intell. Res. vol. 2, no. 1, pp. 1-32,

V. P. Roychowdhury, K.-Y. Siu, and T. Kailath, “Classification of
linearly nonseparable patterns by linear threshold elemenB&ZE
Trans. Neural Networksvol. 6, pp. 318-331, Mar. 1995.

K. P. Unnikrishnaan and K. P. Venugopal, “Alopex: A correlation-based
learning algorithm for feed-forward and recurrent neural networks,”
Neural Comput.vol. 6, no. 4, pp. 469-490, 1994.

P. M. Murphy and D. W. Aha, “UCI repository of machine learning
databases,” Machine-Readable Data Repository, Dept. Inform. Comput.
Sci., Univ. California, Irvine, 1994.

J. R. Quinlan, “Simplifying decision trees|ht. J. Man-Mach. Studies
vol. 27, no. 3, pp. 221-234, 1987.

U. M. Fayyad and K. B. Irani, “On the handling of continuous valued
attributes in decision tree generatiodach. Learn, vol. 8, no. 1, pp.
87-102, 1992.

P. E. Utgoff, “An improved algorithm for incremental induction of
decision trees,” irProc. 11th Int. Conf. Machine Learningp. 318-325,
1994.

R. O. Duda and P. E. HarRattern Classification and Scene Analysis
New York: Wiley, 1973.

J. R. Quinlan, “Probabilistic decision trees,” iachine Learning:
An Atrtificial Intelligence Approachvol. 3., Y. Kodratoff and R. S.
Michalski, Eds. San Mateo, CA: Morgan Kaufmann, 1990.

V. V. Phansalkar and M. A. L. Thathachar, “Global convergence of
feedforward networks of learning automata,” Bmoc. Int. Joint Conf.
Neural Networks Baltimore, MD, June 1992.

D. Goldberg,Genetic Algorithms in Search, Optimization and Machine
Learning Reading, MA: Addison-Wesley, 1989.

Shesha Shahreceived the B.E. degree in com-
puter science and engineering from the University
of Baroda, India, in 1992 and the M.Sc. degree
in electrical engineering from Indian Institute of
Science, Bangalore, in 1996.

Since 1996, she has been a Research Student at
the Indian Institute of Science, Bangalore, India.
Her research interests include pattern recognition,
computational neuroscience, and image processing.

2o Yo ap o,

pattern vectors. This is demonstrated through our simulati 3

results presented in Section IV-C. However, many of the treg
induction algorithms available are not very noise tolerant. One
of the possible ways to design noise-tolerant tree-induction
algorithms is to utilize our 3-layer network structure itself
to learn the decision tree. That is, instead of fixing t
hyperplanes of the first level nodes by the initially learne
decision tree, as is done in the algorithm in Section IV,
could simultaneously learn the parameters of the hyperpla

in the first layer as well as the Boolean vectors that constits =

o

the weights between the first and second layer. It is possi
to use some reinforcement learning algorithms based on |
models for learning hyperplanes [13]. From our prelimenar
empirical investigations, it appears that this is a difficué/

+ %

P. S. Sastry (S'82-M'85-SM'97) received the
B.Sc. (Hons.) degree in physics from the Indian
Institute of Technology, Kharagpur, India, in 1978
and the B.E. degree in electrical communication
engineering and the Ph.D. degree from the Indian
Institute of Science, Bangalore, India, in 1981 and
1985, respectively.

He is currently an Associate Professor in the
Department of Electrical Engineering, Indian
Institute of Science, Bangalore. He has held
visiting positions at the University of Massachusetts,

\/A

mherst, University of Michigan, Ann Arbor, and General Motors Research
aboratories, Warren, NJ. His research interests include reinforcement learn-

problem. However, we believe our network structure meritsg, pattern recognition, neural networks, and computational neuroscience.

