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Abstract—In this paper, we present methods for learning and
pruning oblique decision trees. We propose a new function for
evaluating different split rules at each node while growing the
decision tree. Unlike the other evaluation functions currently used
in literature (which are all based on some notion ofpurity of
a node), this new evaluation function is based on the concept
of degree of linear separability. We adopt a correlation-based
optimization technique called the Alopex algorithm for finding
the split rule that optimizes our evaluation function at each node.
The algorithm we present here is applicable only for 2-class
problems. Through empirical studies, we demonstrate that our
algorithm learns good compact-decision trees.

We suggest a representation scheme for oblique decision trees
that makes explicit the fact that an oblique decision tree repre-
sents each class as a union of convex sets bounded by hyperplanes
in the feature space. Using this representation, we present a
new pruning technique. Unlike other pruning techniques, which
generally replace heuristically selected subtrees of the original
tree by leaves, our method can radically restructure the deci-
sion tree. Through empirical investigation, we demonstrate the
effectiveness of our method.

Index Terms—Learning, linear separability, optimization, tree
induction, tree pruning.

I. INTRODUCTION

DECISION-tree classifiers have been popular in pattern
recognition, concept learning, and other AI branches

[1]. They enable a divide-and-conquer strategy to be ap-
plied to classification problems, and they enable context-
sensitive feature-subset selection to tackle high-dimensionality
problems. Decision-tree learning started receiving increased
attention after Quinlan’s work on ID3 [2] and the CART
methodology of Breimanet al. [3].

In this paper, we present a new algorithm called the Alopex
Perceptron Decision Tree (APDT) algorithm for learning a
decision tree given a set of (preclassified) training patterns.
This is a top-down, tree-growing algorithm, and its main
novel feature is a new approach to evaluating goodness of
various possible split rules at every node. We also present
a new technique for pruning learned decision trees that is
often needed in order to mitigate problems of overfitting. All
algorithms presented in this paper are applicable only for 2-
class pattern-recognition problems. In the final section, we
briefly indicate how these techniques may be extended to
handle multiclass problems.
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A decision tree is a classification rule represented as a binary
tree in which each nonleaf node is associated with a decision
rule (or a “split rule” or a “test”) of the form . This
decides whether a given feature vectorwill go to the left
or right subtree. Each leaf node is assigned a class label, and
all the patterns landing in that node are to be classified in that
class.

Given a sample of classified patterns, most learning algo-
rithms construct a decision tree by recursively determining
split rules at each node while growing the tree in top-down
fashion [1]–[4]. Let denote the family of possible split
rules, and let : be an evaluation function
that measures the goodness of any given a subset
of classified patterns . Different algorithms make different
choices of and .

One popular choice for is rules of the form where
is the th attribute (or feature) value and is a constant.

Decision trees obtained by using this class of split rules are
known asaxis-parallel decision treesbecause here, each class
region in the feature space is represented by a union of hyper-
rectangles with sides parallel to feature axes.

A more general class contains rules of the form
, which gives rise to the so-called oblique

decision trees [3], [4]. Here, each split rule is characterized by
the parameters , and . Oblique decision trees
effect polyhedral partitioning of the feature space. In general,
when classes are separated by a piecewise linear surface,
oblique splits result in more compact decision trees. This is
because, using axis-parallel splits, we need to approximate an
arbitrary hyperplane with a staircase-like structure.

Almost all of the decision tree algorithms in literature use
an evaluation function , which is a measure of the
degree of impurity of children nodes resulting from a split.1

That is, a rule that splits into and , such that each
of them contains an approximately equal number of patterns
from all classes will be judged to be greatly inferior to a split
rule that results in and , each predominantly containing
patterns of one class. While such impurity measures may
be good for axis-parallel trees, they are not very good for
oblique trees, especially in 2-class problems. This is because
we can use a hyperplane as a split rule, and a single split can
complete the classification of any subset of linearly separable
patterns. This situation is illustrated in Fig. 1. For a 2-class
problem in with the class regions as shown, consider the
two hyperplane splits, as in Fig. 1(a) and 1(b). The split of

1A node is calledpure if all the training patterns landing at the node are
of the same class.
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(a) (b)

Fig. 1. Split rule based on (a) purity measure versus (b) separability measure.

Fig. 1(a) results in and , each having a much higher
degree of purity compared to those in Fig. 1(b). However, two
more hyperplanes for each of the children nodes are needed
in Fig. 1(a) to complete the classification, while only one
hyperplane is needed in each child for Fig. 1(b), as both
and are linearly separable here. Because oblique decision
trees can realize arbitrary piecewise linear separating surfaces,
it seems better to base the evaluation function on the
degree of separability of and rather than on the degree
of purity of and . In this paper, we propose a new
function that evaluates a split rule based on the “degree of
linear separability” of the children nodes resulting from the
split rule. We use ideas from [5] to characterize the degree of
linear separability.

Here, in our tree-growing algorithm, we employ a
correlation-based optimization technique called Alopex [6].
Empirically, the Alopex algorithm is found to be effective in
many neural networks and other optimization problems [6].
We show that using our algorithm, we learn smaller decision
trees with better classification accuracy than is possible with
other standard methods.

The rest of the paper is organized as follows. In Section II,
we present the complete details of the APDT algorithm.
Through simulation results presented in Section III, we show
that the APDT algorithm learns compact and accurate decision
trees. In Section IV, we present a new pruning technique,
along with some simulation results to show its effectiveness.
Section V presents discussion and conclusions.

II. A LGORITHM FOR LEARNING OBLIQUE DECISION TREES

Consider a top-down, tree-growing algorithm for learning
oblique decision trees. Here, the main computation (at each
node) is as follows. Given a training sample of classified
patterns, where

is the feature vector, and
is the class label of theth sample, we want

to determine the best hyperplane to subdivide the sample at
that node. If the sample is linearly separable, then of course
the best hyperplane is the separating hyperplane. However, in
general, the pattern-set given to the algorithm at most nodes
will be nonseparable. As discussed in the previous section, we
want to base our evaluation of hyperplanes on the degree of
separability of resulting children nodes.

There are some interesting geometric characterizations of a
set of feature vectors (in ) that are not linearly separable
(see [5] for a detailed account). For the purposes of the
algorithm presented here, we note the following. Suppose
we run the Perceptron algorithm over a training setof
pattern vectors. In the Perceptron algorithm, at each iteraton
we classify the next pattern (feature vector) using current
hyperplane, and if the classification is wrong, then we update
the hyperplane using that pattern. When the setis not linearly
separable, the algorithm goes into an infinite loop. However,
not all the patterns in the training set need participate in
updating the hyperplane infinitely often. In general, there is
a subset of vectors from called “nonseparable” patterns of

that update the hyperplane infinitely often, while the rest
of the patterns of update only a finite number of times
[5, Theorem 6]. For our algorithm, we take the number of
nonseparable patterns of as an indication of the degree
of linear separability of . We can estimate the number of
nonseparable patterns of a set of training patternsas follows.
We run the Perceptron algorithm on for a fixed number
of iterations, keeping a count of the number of times each
pattern participated in updating the hyperplane. At the end of
the algorithm, if for instance, is the maximum count, we
then take all the patterns that participated in updation at least

times as nonseparable patterns, where is a parameter
(in our algorithm, we take ). What we need for our
algorithm is the number of such nonseparable patterns of.

A. New Function to Evaluate Split Rules

Let, be the sample set at node with patterns.
The split at node is parametrized by weight vector

. Let
be a given feature vector. Let

and . When is the split rule at ,
and are the pattern-sets that go into the left and right

children and of node . Let and .
Let and be the number of nonseparable patterns
in the sets and , respectively.

Our aim is to have an evaluation function for split rules
that minimizes nonseparable patterns in children nodes. When
a child is linearly separable, we prefer the split that puts more
patterns in that child, preserving linear separability. To do this,
define an evaluation function as

(1)

where

parameter vector of the hyperplane;
the set of patterns at nodeand (the
number of patterns in );

, where is the set of a pattern at left child
of obtained by splitting using ;

, where is the set of a pattern at right child
of obtained by splitting using ;
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, number of nonseparable patterns in and ;
which is calculated using the Perceptron altorithm
for a fixed number of iterations as explained earlier;

;
minimum value of .

If , then , else .
If , then , else .

is a constant (we have used in our
simulations).

In (1), when any of the children is linearly separable, only
term A will contribute. But when both children are not linearly
separable, is given only by term B. From (1), we
observe the following.

• When either of the children is separable (for instance if
is linearly separable, i.e., ), then

. That is, by minimizing , we de-
crease the patterns falling in right child.

• When both of the children are linearly separable (i.e.,
and ), , which is a

global minimum.
• In the case in which both children are not linearly

separable,
. By minimizing , we minimize

nonseparable patterns in both children. But here we have
an additional product term ,
which ensures that a split that puts all patterns atin one
child node will not result. Also note that in term A in
(1) will ensure that the value of term A is always smaller
than that of term B.

We use the above function as an evaluation function
in our APDT algorithm. In this algorithm, in order to find
the split rule at each node that minimizes , we use the
Alopex optimization algorithm, which is described in the next
section.

B. Alopex Algorithm

To learn the best hyperplane, we need to minimize
at each node. From the definition of it is clear that
given a sample at node and a weight vector of
the hyperplane, we can calculate . However, it is
not possible to get gradient information directly. We need
to estimate the gradient or use some algorithm that does not
require gradient information. Here, we use the Alopex algo-
rithm [6], which does not require gradient information. Below,
we describe the Alopex algorithm for a general optimization
problem, following [6].

Let be the objective function. We are interested
in finding a at which attains
a minimum. Let be the estimate of minimum atth
iteration. Then, is updated as

(2)

where is the step size, and
is a random vector with , having the
following distribution

with probability
with probability

(3)

Here

(4)

where is a positive “temperature” parameter, and
is the changes in the objective function over the previous
two iterations

The temperature is updated at every iterations (where
is a parameter of the algorithm) using the following “annealing
schedule”

if is multiple of

otherwise.

(5)

The algorithm is initialized by randomly choosing
and obtaining , done by making take values
and with equal probability for each. From (3) and (4) it
is clear that at each iteration, the algorithm makes a random
choice of direction , which
is computed in a distributed fashion and the algorithm makes a
step of constant size along that direction. Note that each
is calculated independently based on . If over the previous
two iterations has decreased, then eachis changed in the
same direction as in the previous iteration with a probability
greater than 0.5. How fast these probabilities go to zero or one
with increasing magnitude of depends on the temperature.
From the annealing schedule given in (5), it is clear that the
algorithm has some self-scaling property. This is because, in
determining , essentially we are comparing current
with its recent averaged value. The free parameters of the
algorithm are , the step size, and (the number of iterations
over which is averaged to get temperature in an annealing
schedule). The initial temperature can be arbitrary. The
value of should be chosen so that sufficient averaging of

takes place. The algorithm is not very sensitive toas
long at it is not too small. The parameteris step size in
updating . The algorithm is not very sensitive toas long
as it is small. Also, it is observed empirically that reducing the
value of toward the end helps. For a multidimensional input
pattern with each attribute having values in different ranges,
normalizing pattern vectors improve learning accuracy and
learning rate. This problem also can be handled by choosing
a different value of for each component in Alopex.

C. APDT Algorithm for Decision-Tree Induction

Our APDT algorithm consists of finding the split rule
at each node to minimize [given in (1)] using
the Alopex algorithm (see Section II-B). The complete APDT
algorithm is given in Table I.

The algorithm grows the decision tree by recursively calling
growTree() procedure. At each node, growTreeis called with
a subset of training samples, which fall into that node. We
use the Alopex algorithm to find the best at that node. In
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TABLE I
PART I OF COMPLETE APDT ALGORITHM

each iteration of Alopex, we obtain and from , us-
ing the current split . We then run the Perceptron algorithm
for a fixed number of iterations on and to obtain the
number of nonseparable patterns and in them,
respectively. Using these values, we calculate ,
which is used in the Alopex algorithm to update . The
Alopex algorithm runs for a fixed number of iterations. The
same call to the Perceptron algorithm that returns the number
of nonseparable patterns also returns the separating hyperplane

(respectively, ) if (respectively, ) is linearly
separable.

In APDT algorithm growTree( ), a routine is called re-
cursively only when the sample at that node is not linearly
separable. If any child node was linearly separable, it would
have been detected by the routine in step 4, and declared
as a leaf node in step 7. Thus, in the main routine of the
APDT code, we assume that sample is not linearly separable
(which can be easily detected before callinggrowTree( ).
Also note that in step 4, when we have we have
found a hyperplane that gives linearly separable children. That
results in adding one or three nodes for each child as given
in step 7, because the separating hyperplane for a linearly
separable child node (when it is not pure node) is already found

while running the Perceptron algorithm to count nonseparable
patterns for that child. This is a kind of one-step look-ahead
while recursively growing the tree. The APDT algorithm is
a stochastic algorithm because of Alopex. On every run it
gives a different tree, which is consistent with the training set.
For this reason, we can use the “multiple trees” approach for
classification [3].

III. SIMULATION RESULTS

We present some of the results of our empirical studies
of the APDT algorithm both on synthetic problems and on
some Machine Learning databases from UCI ML Database
repository [7].

All our synthetic problems are two-dimensional (2-D) and
the feature space is the unit square in For training, a
fixed number of patterns are generated randomly using uniform
distribution. To evaluate performance of learned decision tree
we generated another test sample using uniform distribution.

In the APDT algorithm, we run the Perceptron algorithm for
max iterations and the Alopex algorithm for 500
iterations. For the Alopex algorithm, we have taken ,

, and . The results presented from the
APDT algorithm are without any pruning. We compared the
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TABLE I
PART II OF COMPLETE APDT ALGORITHM (Continued.)

APDT algorithm with four other algorithms: ID3, CART-AP
and CART-LC, and OC1.

ID3, due to Quinlan, is a popular method for discovering
classification rules from a sample of patterns over nominal
attribute space [2], [8]. This is extended to handle linear
attributes by Fayyad and Irani [9], and we use this extension.
ID3 uses an impurity-based evaluation function motivated
by some information theoretic considerations, and it does an
exhaustive search at each node to come out with the best axis-
parallel split rule. We used Utgoff’s program2 [10] to simulate
ID3, which also includes pruning to avoid overfitting.

CART is another popular approach for inducing decision
trees. Here, we termed the CART algorithm for learning axis-
parallel decision trees as CART-AP, and the algorithm for
learning oblique decision trees as CART-LC. Both algorithms
use Gini impurity measure [3] for evaluating split rules at
each node. CART-AP does an exhaustive search to find the
best axis-parallel split at each node, while CART-LC uses
a perturbation-based method [3]. In CART simulation, we
employed 0-SE, CC pruning [3] on the learned decision tree.

2This program for ID3 does not give training and test accuracy separately.
So Table II has the same values in corresponding columns.

The OC1 algorithm [4] is similar to CART-LC, and it also
learns oblique decision trees. We have used Murthy’s [4]
programs for simulating OC1, and this program includes 0-SE,
CC pruning. In our simulation, none of the methods employ
any explicit feature-subset selection.

Performance of various algorithms is compared by evaluat-
ing the learned decision trees in terms of accuracy and size.
Accuracy is measured by the classification error made on the
test sample. The size of a tree is characterized by number of
nodes and the depth of tree. A good tree is one with high
accuracy, few nodes, and less depth. We give average (over
five runs) and best results for all the problems. Note that in
CART-LC, OC1, and the APDT algorithms we get different
trees with different random seed, whereas for ID3 and CART-
AP, we get only one tree. Hence, for ID3 and CART-AP, the
average tree is same as the best tree learned.

A. Synthetic Problems

Shown in Fig. 2 are three synthetic 2-class pattern classifi-
cation problems over [0, 1] [0, 1]. For each problem, we
generated 1000 training samples and 500 test samples using
uniform distribution. The simulations are done under no-noise
conditions. Table II gives the best trees obtained (in terms of
accuracy on test sample) and Table III gives average results
(over five runs) for each algorithm.

B. Real-World Problems

In addition to the six synthetic problems given above,
we also tested our algorithm on two problems from UCI
machine-learning databases, the IRIS problem, and the WINE
classification problem.

1) IRIS Problem: This domain contains three types of
plants: Iris-setosa, Iris-versicolor and Iris-viginica. Each plant
is characterized by four real-valued attributes (petal width,
petal length, sepal width, and sepal length). It is known [11]
that the class Iris-setosa is linearly separable from the other
two, and that and the other two are not linearly separable.
We consider the nonlinearly separable problem of determining
whether or not the given plant is Iris-viginica.

Since the domain consists of 150 patterns, we divide the
patterns into two parts: a training set with 120 patterns and a
test set with 30 test patterns. In the APDT algorithm, the value
of free parameters is chosen as given in Section III except for

. The simulation results are given in Table IV.
2) WINE Classification Problem:These data are the result

of a chemical analysis of wines grown in the same region but
derived from three different cultivars. The analysis determined
the quantities of 13 constituents found in each of the three
types of wines, and these are provided as the values of 13
real-valued attributes. We consider the problem of classifying
the first type of wine as opposed to the other two.

The domain consists of 178 patterns. We divide the data set
into two sets of 103 and 75 patterns and use the first one as
training and the second as a test set. Table IV summarizes the
results. In the APDT algorithm, we had chosen a step size of

. The patterns are normalized to take value from (0,
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Fig. 2. Synthetic problems 1–3.

TABLE II
BEST RESULTS (OVER FIVE RUNS) FOR PROBLEMS 1–3

TABLE III
AVERAGE RESULTS (OVER FIVE RUNS) FOR PROBLEMS 1–3

1) by dividing each attribute by its maximum value from the
training set.

C. Discussion

Out of three synthetic problems we studied, the first two
had piecewise linear separating surfaces, and Problem 3 had

a nonlinear separating boundary. Compared with the other

tree-growing methods, it was observed that the best and

average tree learned by APDT is smaller and more accurate.

This justifies the motivation we had given earlier regarding

degree of separability being more relevant than degree of
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(a)

(b)

Fig. 3. Best tree learned for Problem 1 (a) APDT algorithm and (b) OC1 algorithm.

TABLE IV
AVERAGE RESULTS (OVER FIVE RUNS) FOR ML PROBLEMS

purity, especially in problems with piecewise-linear separating
boundaries. It should be noted that in the APDT algorithm, we
did not employ any pruning, while the results presented for
all the other algorithms were those obtained after pruning the

learned tree. Also, it is clear from the tables that axis-parallel
trees are a poor choice for representing general classifiers. The
APDT algorithm takes approximately twice the time taken by
OC1 or CART-LC in all problems.

It is empirically observed that on different runs, the APDT
algorithm learned trees that do not vary much in terms of size
and performance, unlike methods such as CART-LC (compare
the best versus average performance). This may be due to the
fact that we use the Alopex algorithm for finding the best split
at each node, and that this algorithm is known to be a very
robust, general-purpose optimization technique [6].

Among all the other algorithms that we tried, OC1 gave
the best results in terms of both accuracy and size of the tree
learned. Hence, in Figs. 3 and 4 we compare the best tree
learned by the APDT and OC1 for two synthetic problems3.
The (a) pictures in Figs. 3 and 4 show the tree learned by the
APDT, and the (b) pictures show the tree learned by OC1. In

3The best tree is in terms of accuracy on the test sample.



SHAH AND SASTRY: NEW ALGORITHMS FOR OBLIQUE DECISION TREES 501

(a)

(b)

Fig. 4. Best tree learned for Problem 2 (a) APDT algorithm and (b) OC1 algorithm.

the figure, each split rule in the decision tree is indicated by
the name of the corresponding hyperplane, and it is shown on
left side of each figure. For Problem 2, the best tree learned by
OC1 has 18 internal nodes, and it is complicated. Therefore, in
Fig. 4 we give the smallest tree learned by OC1, the accuracy
of which is much lower (98.5% on the training set and 97.4%
on the test set). Figs. 3 and 4 show that the APDT learns exact
boundaries of piecewise linear separators where they exist, and
in general, the trees learned are more compact and accurate.
This is the reason the APDT algorithm did not need pruning for
these problems. But for more complicated problems, we may
have to use pruning techniques to avoid overfitting problems.

IV. DECISION-TREE PRUNING AS A

BOOLEAN-VECTOR LEARNING PROBLEM

Most top-down, decision-tree induction methods, being
greedy algorithms, generally suffer from the problem of
overfitting. Pruning is a well-known method to handle this
[3]. The objective of pruning is to restructure a learned
decision tree so that its accuracy on test data is improved.

Most standard pruning techniques achieve this by replacing
selected subtrees with leaf nodes [3], [12]. In this section, we
present a new class of pruning techniques that are capable of
effecting a more radical restructuring of the learned tree.

In classifying a pattern using a decision tree, we follow
a path from the root to a leaf node such that the pattern
satisfies all the conditions in the nodes along the path. Hence,
in an oblique decision tree, each such path would represent an
intersection of half spaces, and thus in a decision tree, each
class would be represented as a union of such convex regions
in the feature space. We can use this fact to represent a decision
tree as a special kind of 3-layer feedforward network.

The general structure of such a network is shown in Fig. 5.
Each node in the first layer of the network (not counting the
input layer) represents one hyperplane. To fix the notation,
let denote the number of first-layer units, and let the
th unit represent a hyperplane parametrized by

(we are assuming
an -dimensional feature space). On an input pattern

, the output of the th unit is if
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Fig. 5. Three-layer feedforward network representation.

and otherwise. Let there be
units in the second layer, each of which implements a kind of
AND function. The th second-layer unit is connected to all
first-layer units through a weight vector
where . The output of theth second-
layer unit is if for all , such that ,
otherwise . The third layer consists of a single OR unit,
which is connected to all second-layer units. Its output, which
is the output of the network, is one if the output of at least
one second-layer unit is one.

It is easy to see how any decision tree can be represented as
such a 3-layer network. The first layer consists of all distinct
hyperplanes (split rules) at all nodes of the decision tree and
also their complements. The second layer consists of as many
nodes as there are leaves in the decison tree, labeled class-
1. Each second-layer unit is connected, with weight one, to
all hyperplanes in the first layer that appear on the path from
the root to the leaf node corresponding to this second-layer
unit. All the other connections from that second-layer unit to
the first-layer units will have weight zero. Now it is easy to
see that output of the network will be one on all patterns that
would be classified as class-1 by the decision tree.

We can use this network representation for pruning a
decision tree as follows. We fix all the first-layer units so
that they represent all distinct hyperplanes that are present
in the learned tree and also all the complements of the
hyperplanes. This fixes a value of and all
in the first layer. We can fix (the number of second-
layer units) heuristically based on the pruning expected. The
value of decides the maximum possible number of paths
ending in class-1 leaves in the final pruned tree. Now pruning
is viewed as learning the boolean vectors

. Any specific value for each would represent one
specific way of restructuring the learned tree (using only the
hyperplanes originally learned). The goodness of any choice
can be assessed using a training set of patterns. Learning
optimal vectors amounts to learning a way of choosing
and combining the hyperplanes in the original tree to improve
the accuracy of the learned tree. Such a pruning technique can
effect a more radical restructuring of the original tree than that
of simply replacing selected subtrees by leaves.

Even though there are a finite number of possiblevectors
(as each ), an exhaustive search
would be very expensive computationally for most problems.
In what follows, we briefly discuss two stochastic algorithms
for learning these Boolean vectors. The first algorithm is based
on learning automata (LA) models [13], and the second is
based on genetic algorithm (GA) models [14].

A. LA Pruning

The LA pruning algorithm is given in Table V. At each
iteration , the algorithm updates probabilities

. All of these probabilities are initialized to 0.5.
At each iteration , the algorithms makes a random choice
of Boolean vectors based on these probabilities. That
is, Prob . The resulting network is
used to classify the next sample pattern, and the correctness
or otherwise of this classification is used to update the prob-
abilities. The parameter controls the stepsize used in the
updating, and it should be sufficiently small. This algorithm
is a special case of a general LA algorithm [13]. The general
algorithm is known to converge to parameter values that are
local maxima of expected value of calculated in step 7 of
the algorithm. Hence, one can expect this pruning technique
to result in compact trees with good accuracy.

B. GA Pruning

Since our pruning algorithm amounts to learning parameter
values, all of which are Boolean, the problem is well suited
for application of genetic algorithms [14]. In GA pruning, we
used the classification accuracy on the sample achieved with
any specific set of parameter values as the fitness function
value for that parameter setting. We used standard crossover
and mutation operators.

C. Simulation Results

In this section, we present some empirical results with our
pruning technique and discuss the utility of the 3-layer network
structure for pruning decision trees. We also show that both
our pruning algorithms can learn a good tree even if the sample
used is corrupted by classification noise.

To test the pruning technique, we have selected Problem
2, discussed in Section III-A. We have taken the initial trees
as learned by OC1 and CART-LC algorithms (without any
pruning) and compared the results obtained using our pruning
algorithms with those obtained using the standard CC pruning
technique.4. These results are shown in Table VI. For each
pruning technique, the table shows the percentage accuracy
(on both training and test sets) and the size of the learned tree
in terms of number of internal nodes. From the table, it
is easy to see that the pruning techniques that use our three-
layer feedforward network structure consistently outperform
the standard CC pruning.

4As mentioned in Section III-A, the APDT algorithm learned the separating
boundary to a close approximation in all the synthetic problems and that is
the reason we are not testing the pruning techniques on trees grown using the
APDT algorithm.
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TABLE V
LA PRUNING ALGORITHM

Table VII shows results (percentage accuracy and size in
terms of number of nodes ) obtained using different pruning
techniques for Problem 2 when the training set is corrupted
with unbiased classification noise (the percentage of noise
added is shown in column 2 in Table VII). From the results
in Table VII, it is easy to see that even after adding 15%
of classification noise, the final pruned tree is very accurate
(note that the percentage accuracy of the final tree in the
table is calculated using uncorrupted samples). The last two
columns in Table VII compare the time taken by our pruning
techniques ( ) with that needed for an exhaustive search
over all possible Boolean vectors ( )5.

5The time for exhaustive search is obtained by evaluating a fixed number
of Boolean vectors on the sample set and then extrapolating the time for the
total number of Boolean vectors to be considered.

Fig. 6 shows typical learning curves for LA pruning and
GA pruning6. In these graphs, the error is with respect to the
corrupted training samples, which is why, asymptotically, the
error rate is the same as the noise rate.

V. CONCLUSIONS

In this paper, we have considered the problem of learning
accurate and compact decision trees from a sample of preclas-
sified pattern vectors. Most of the tree induction algorithms
currently available follow the top-down recursive method. As
discussed in Section I, the design of any algorithm for inducing
decision trees involves two issues: choosing an evaluation

6Each iteration in GA pruning corresponds to one generation.
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Fig. 6. Error plots for LA pruning and GA pruning.

TABLE VI
COMPARISON OFCC PRUNING, LA PRUNING, AND GA PRUNING FOR PROBLEM

2. L = 2 HAS BEEN CHOSEN FORPROBLEM 2 IN LA PRUNING AND GA
PRUNING, AND � = 0:003 HAS BEEN CHOSEN IN LA PRUNING. PROBABILITY

OF CROSSOVER ANDMUTATION IS 0.7 AND 0.03, RESPECTIVELY, IN GA PRUNING

TABLE VII
COMPARISON OF CC PRUNING, LA PRUNING, AND

GA PRUNING ON PROBLEM 2 WITH NOISY SAMPLES

function to quantify goodness of a split rule and choosing an
optimization technique to find the best split rule at each node.

Almost all of the decision-tree algorithms in literature evalu-
ate split rules based on the degree of purity of children nodes
resulting from the split. Thus, they prefer splits that result
in children nodes that have pattern sets with predominantly
skewed distributions of different classes. As we argued in

Section I, since each split rule in an oblique tree can be an
arbitrary hyperplane, it is better to prefer split rules that result
in children nodes having linearly separable subsets of patterns.

With this motivation, in this paper we presented an evalua-
tion function that rated split rules based on the degree of linear
separability of pattern-sets that go into children nodes resulting
from the split. We used a heuristic estimate of the number
of nonseparable patterns in a pattern-set to characterize the
degree of linear separability. We used the Perceptron algorithm
for estimating the number of nonseparable patterns, which is
justified by theoretical results in [5].

Having decided on the evaluation function, we need an
optimization algorithm to find the best split rule. For oblique
split rules, brute-force optimization is clearly impractical. Be-
cause we cannot explicitly calculate the gradient of evaluation
function with respect to parameters of split rule, we cannot use
any standard optimization technique. Algorithms like CART
and OC1 rely on perturbing each of the parameters of the
hyperplane split rules individually several times to achieve
the optimization. In our method, we adopted the Alopex
optimization algorithm to find the best split rule. The Alopex
algorithm is well suited for our problem, as it does not
need any gradient information, and it exploits the correlation
between changes in parameters and changes in the objective
function values.

Simulation results show that the APDT algorithm learns
better trees in terms of both accuracy and size compared to
other oblique decision-tree induction methods. As discussed
in Section III-A, the APDT algorithm learns a very good
approximation to the optimal tree in problems with piecewise
linear separating boundaries. Even in problems with nonlinear
class boundaries, its performance is as good as or better than
that of OC1 and CART. The results also show that axis-parallel
trees are much poorer at representing piecewise linear class
boundary compared to oblique decision trees.

The APDT algorithm presented in this paper can handle
only 2-class problems. Extending this approach to multiclass
problems requires further investigation. The most obvious
extension is to learn one decision tree each, to separate one
class from all the rest. Thus, we need to learndifferent
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decision trees for an -class problem. An alternate approach
would be to modify our evaluation function so that degree
of separability now means degree of separability of the most
predominant class from all the rest. For example, given a
pattern set of for estimating the number of nonseparable
patterns , we run the Perceptron algorithm with the aim
of separating the most predominant class in from all the
rest. More empirical studies are needed to decide on the most
suitable extension to handle multiclass problems.

Apart from this issue of multiclass problems, there are many
other extensions possible to the basic the APDT algorithm.
Our evaluation function represents a first attempt at charac-
terizing the notion of degree of separability. A better way
to characterize this notion would certainly help improve the
performance of the algorithms. In our algorithm, we have not
addressed issues such as handling missing attributes, achieving
dimensionality reduction through feature subset selection, etc.
However, such facilities easily can be incorporated in the
APDT algorithm.

Most top-down, recursive-tree induction algorithms suffer
from the problem of overfitting, and pruning is a well-studied
method advocated to handle this. Most pruning methods
improve the generalization ability of learned trees by replacing,
with leaves, subtrees that do not contribute significantly to
classification accuracy. In this paper, we also have presented
a general pruning technique that can effect a more radical
restructuring of the tree. The main idea is to represent the
decision tree as a specific, 3-layer feedforward network that
allows one to pick a subset of all learned hyperplanes and
combine them appropriately so as to increase the accuracy of
the final tree. The pruning problem here amounts to learning
Boolean vectors that constitute the weights between first and
second layers of the network. We have presented two specific
algorithms that can learn the correct Boolean vectors effi-
ciently. These pruning techniques, based on our representation
of the decision tree as a 3-layer network, can be applied to
decision trees learned using any tree-growing algorithm. The
algorithm we presented is applicable only to 2-class problems.
Extension of this technique to handle multiclass problems
requires further investigation.

The pruning algorithms that we proposed are quite robust
with respect to classification noise in the given sample of
pattern vectors. This is demonstrated through our simulation
results presented in Section IV-C. However, many of the tree-
induction algorithms available are not very noise tolerant. One
of the possible ways to design noise-tolerant tree-induction
algorithms is to utilize our 3-layer network structure itself
to learn the decision tree. That is, instead of fixing the
hyperplanes of the first level nodes by the initially learned
decision tree, as is done in the algorithm in Section IV, we
could simultaneously learn the parameters of the hyperplanes
in the first layer as well as the Boolean vectors that constitute
the weights between the first and second layer. It is possible
to use some reinforcement learning algorithms based on LA
models for learning hyperplanes [13]. From our prelimenary
empirical investigations, it appears that this is a difficult
problem. However, we believe our network structure merits

further attention from the point of view of designing robust,
decision-tree learning algorithms.
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