
Sadhana, Vol. 24, Parts 4 & 5 , August & October 1999, pp. 261-292. 0 Printed in India

Learning auto ata algorit

P S SASTRY and M A L THATHACHAR

Department of Electrical Engineering, Indian Institute of Science, Bangalore
560 0 12, India
e-mail: [sastry,malt] @ee.iisc.ernet.in

Abstract. This paper considers the problem of learning optimal discriminant
functions for pattern classification. The criterion of optirnality is minimising the
probability of rnisclassification. No knowledge of the statistics of the pattern
classes is assumed and the given classified sample may be noisy. We present a
comprehensive review of algorithms based on the model of cooperating systems
of learning automata for this problem. Both finite action set automata and
continuous action set automata models are considered. All algorithms presented
have rigorous convergence proofs. We also present algorithms that converge to
global optimum. Simulation results are presented to illustrate the effectiveness
of these techniques based on learning automata.

Keywords. Learning automata; games of learning automata; optimisation of
regression functions: minimising probability of misclassification; global
optimisation.

1. Introduction

In this paper we discuss the problem of learning optimal decision rules for classifying
patterns. We survey a number of adaptive stochastic algorithms for finding the decision rule
that minimises the probability of misclassification. All these algorithms are based on the
learning automata (LA) models (Narendra & Thathachar 1989). The primary motivation
for this survey is that while LA methods are effective in solving many pattern recognition
(PR) problems, the variety of automata-based techniques available for learning many rich
classes of classifiers, are not widely known. Here we present a unified view of LA
algorithms for pattern classification.

The LA algorithms that we consider are all essentially optimisation algorithms for
finding a maximum or a minimum of a regression functional based on noisy function
measurements. Such an optimisation is an important component of learning both
in @atistical pattern recognition as well as in computational learning theory and the
probably approximately correct (PAC) learning of symbolic concepts (see the discussion in
Haussler 1992). The LA algorithms that we discuss here are useful both in PR (Thathachar
8z Sastry 1987; Thathachar & Phansalkar 1995b) and in learning concepts in the forrn of
Boolean expressions (Sastry et aZ1993, Rajaraman & Sastry 1997). To put these algorithms

261

262 P S Sastry and M A L Thathachar

in proper perspective, we briefly review below the 2-class PR problem and the PAC
learning framework as extended by Haussler (1992).

We shall be considering the pattern recognition (PR) problem in the statistical frame-
work. For simplicity of presentation, we shall concentrate only on the 2-class problem.
However, all these algorithms can be used in multiclass problems also (e.g., see discussion
in Thathachar & Sastry 1987).

Consider a 2-class PR problem. Let p(XI1) and p(X12) be the two class conditional
densities and let p1 and p2 be the prior probabilities. Let the discriminant function, g (X) , be
given by g(X) = p(X/l)pl -p(X12)p2. (Here X is the feature vector). Then, it is well
known (Duda & Hart 1973) that the Bayes decision rule:

decide X E class - 1,
decide X E class - 2,

if g(X) > 0,
otherwise,

is optimal in the sense that it minimises the probability of error in classification.
Often, in a PR problem we do not know the class conditional densities and prior

probabilities. All that is provided is a set of sample patterns along with their correct
classification (modulo noise, if present), using which the proper decision rule is to be
inferred. One approach is to assume that the form of the class conditional densities is
known. Then the sample patterns can be used for estimating the relevant densities, which,
in turn, can be used to implement Bayes decision rule (Duda & Hart 1973). This method is
somewhat restricted by the class of densities that can be handled. Also it is difficult to
relate the errors in classification to errors in estimation of densities.

An alternative approach is to assume some parametric form for the discriminant function
and learn the needed parameters. Let g(X, W) be the discriminant function, where X is the
feature vector and W is the parameter vector, to be used in a decision rule:

decide X E class - 1,
decide X E class - 2,

if g(X, W) > 0
otherwise.

Now the problem is one of determining an optimum value for the parameter vector from
the sample patterns provided. For this we need to define a criterion function and devise
algorithms for determining where the criterion function attains optimum values. We are
interested in the case where the class conditional densities are totally unknown and there
may be present both pattern noise (in the sense that class conditional densities may be
overlapping) and classification noise (in the sense that the classification provided for the
sample patterns may occasionally be incorrect). The objective is to determine a parameter
vector that results in rninirnising probability of error in classification.

A popular criterion function for this problem (particularly for neural net algorithms) is
the squared error over the sample set. Here we define

(3)

where S is the set of sample patterns. Y(W,X) denotes the output of the classifier with
parameter vector W on the pattern X, and t (X> is the ‘correct’ classification (as given in the
sample set) for X.

This is the criterion function used with feedforward neural network models for pattern
classification. In such a model Y (. , .) is represented by the neural net and W corresponds to

Learning automata algorithms for pattern classification 263

the weights in the network. If we choose a discriminant function’ g(W, X) = WTX and
define Y (. , .) by the decision rule given by (2), we get the Perceptron model (Minsky &
Papert 1969). The Perceptron learning algorithm guarantees to find a W at which the value
of F (.) given by (3) is zero provided such a W exists. In general, we can find a W that
minimises F (.) using gradient descent. However, in such a case, Y (. , .) has to be
differentiable with respect to its first argument. In feedforward neural net models with
sigmoidal activation function, the error backpropagation algorithm (Rumelhart et al 1986)
implements gradient descent in a parallel and distributed manner,

One of the problems with the criterion function F (.) defined by (3) is that it measures the
error of a classifier (given by W) only over the sample set. However, we are interested in
the classification error over the entire population. That is, if W* is a minimiser of F (.) then
we want to know how well a classifier with parameters W* performs on a random new
pattern. This issue of generalisation is a well studied problem in statistics (Vapnik 1982,
1997). The ‘goodness’ of the learnt classifier W* depends on whether there are ‘sufficient’
number of ‘representative’ samples and on the ‘complexity’ of the class of discriminant
functions chosen. For example, in the case where the discriminant function is to be
represented by a multilayer perceptron, if the samples are drawn in an independent
identically distributed (iid) manner, then, using results from computational learning theory
(Blumer et al 1989), it is possible to put an upper bound on the required number of samples
to ensure, with a (preset) high probability, that the classification error with W* is no more
than (say) twice the average error made by W* on the sample set (Baum & Haussler 1989).
(See Vapnik 1997 for a comprehensive discussion on this issue.)

In the statistical pattern recognition framework, one can ensure that the criterion function
properly takes care of the generalisation problem by defining F (.) by

F(W) = E[Y(W, X) - t (X) I2 , (4)
where E denotes expectation with respect to the (unknown) distribution from which the
patterns are drawn. It should be noted that F (.) defined by (4) is not observable. That is,
given a W we cannot get F(W) because the relevant statistical properties of the pattern
classes are unknown. Now consider the function, k(W,X) = (Y(W, X) - t (x))2 which is
observable for all sample patterns. If the sample patterns are drawn in an iid manner then
we have

F(W) = EF(W, X). (5)
From the given sample of patterns (and hence the observations on p) , we can find a W

that minimises F(.) using, e.g., stochastic approximation algorithms (Kiefer & Wolfowitz
1952, Blum 1954, Kashyap et al 1970, Kushner & Yin 1997, Borkar 1998). As earlier, we
need to assume again that Y (. , .) is a differentiable function of its first argument. Unlike the
case of the criterion function defined by (3), here we can also take care of zero-mean
independent additive noise in the classification (the expectation operation in (5) can include
averaging with respect to the noise also).

There is still one important problem with both the criterion functions defined above. The
parameter vector that minimises F (.) does not necessarily minimise probability of
misclassification (Sklansky & Wassel 1981). If we assume that probability of
misclassification is a more natural criterion for pattern classification problems, then we

Here WT denotes transpose of vector W

264 P S Sastry and M A L Thathachar

should define the criterion function by

F(W) = Prob[W misclassifies a random pattern]. (6)

For a two class problem, we can assume both Y and t (defined earlier) to be binary
valued. Then, if we assume, as before, iid samples and unbiased classification noise, we
can rewrite (6) by

F(W) = El{Y(W,X)#t(X)}, (7)

where IA is the indicator of event A, and E denotes the expectation. Since the indicator
function above is observable for all sample patterns, we may think that we can once again
use simple stochastic approximation algorithms for minimisation. However, here Y (. , .)
needs to be binary valued and would not be differentiable. There are schemes based on
stochastic approximation algorithms for tackling this problem (Sklansky & Wassel 198 1)
though these techniques are rather cumbersome and are computationally intensive.

In finding a W that minimises F (.) given by (7), one uses an iterative algorithm that
updates W, to Wlz+l using the ‘noisy’ value of F (.) , namely, l{y(w,l,xn)#t(x,,)}, where X, is
the nth sample pattern and W, is the parameter vector at iteration n. Such algorithms (e.g.,
stochastic approximation algorithms or the LA algorithms discussed in this paper) converge
asymptotically to a minimiser of F(.) given by (7). Such a procedure presupposes an
infinite sequence of iid samples. Since in practice one has only a finite set of samples, what
can we say about the result of such algorithms if ,the same set of samples are used
repeatedly till convergence? This question, widely studied in computational learning
theory, brings to focus the distinction between the statistical part and the optimisation part
inherent in any learning problem. We briefly discuss below a framework due to Haussler
(1992) that clarifies this issue.

Let X be the feature space and let y = {0,1} be the output space of our classifier. Let
s = {(Xi, yi), 1 L: i 5 rn, Xi E X, yi E y } be a finite set of labelled samples drawn in an iid
manner with respect to some distribution P on X x y. (Note that since P is arbitrary, noise
is automatically taken care of). Every classifier or decision rule is a function from X to Y
(e.g., Y(W,.) above). Let ?-I be the set of classifiers of interest. Define a functional on 3-t by

F (h) = E e (W , Y) , h E 3.1, (8)

where E denotes expectation with respect to P and t(. , .) is called the loss function. On a
sample (X, y) , where X is the feature vector and y is the classification, L(h(X), y) gives the
loss suffered by the classifier h. The loss function is assumed to be known to the learner. If
we consider a loss fimction given by: l (x , y) = 0 when x = y and L(x, y) = 1 when x # y ,
F (.) given by (8) is same as that given by (7) and it will be the probability of
misclassification with classifier h. Let

h* = arg min F(h) ,
hE7-I

which is the optimal classifier.
Define another functional on 3.1, F , by

F(h) = Et(h(X) , y)

(9)

Learning automata algorithms for pattern classification 265

where E denotes expectation with respect to the empirical distribution defined by the
sample set S = { (X j , y i) , I L: i 5 m}. Let

Suppose it is true that F(h) converges to F(h) uniformly over 7-1. This depends on the
nature of 7-l and thus on the structure chosen for the classifier. However, given such a
uniform convergence, a close enough approximator to from a sufficiently large sample set
will also be a close approximator to h*. (See lemma 3.1 in Haussler (1992) and the
discussion therein.) Now we can think of the problem of learning, to a good approximation,
the optimal classifier h* from a finite sample set as having two parts. One is the statistical
problem of establishing the uniform convergence as above and calculating the number of
samples needed for a given degree of approximation. The second one is an optimisation
problem of finding a good approximator to given a finite set of samples. The
computational learning theory literature has concentrated mostly on the statistical part of
the problem and many results are available regarding the number of samples needed for
learning a good approximation to h* for various kinds of 7-t (Vapnik 1982; Natarajan 1991;
Haussler 1992; Vapnik 1997). In this paper we concentrate on the second problem, namely,
finding a good approximation to given a finite set of samples, for many rich classes 3-1.

We will be discussing learning automata algorithms for minimising F (.) defined by (6) or
equivalently by (8). LA methods considered here are all essentially regression function
learning algorithms. That is, based on observations of l (h (X j) , y i) from a sequence { (X i , y j) }
of iid samples, the algorithm finds the minimiser of F (-) defined by (8). Hence, given a
finite set of sample patterns, S, if samples are presented to the algorithm by uniformly
drawing from S, then, the algorithm will (asymptotically) find a minimiser of defined by
(10). If F(h) converges to F(h) uniformly over 3-1, then as discussed above, the algorithm
will find a good approximator to the optimal classifier defined by (9). The structure of
classifiers we consider are such that the needed uniform convergence holds. Hence, even
though we present the algorithms as if we have an infinite sequence of iid samples, in this
sense, the algorithm learns well from a sufficiently large finite sample. However, we do not
give any sample complexity results for various families of classifiers here because these are
easily calculated, e.g., from the results of Haussler (1992) and Vapnik (1997).

We can broadly distinguish between two types of algorithms for optimisation employed
in pattern recognition: deterministic and stochastic. The simplest and most often used
algorithm is the gradient descent procedure. Here one searches in the parameter space by
the following iterative procedure

W(k+ 1) = W(k) - qVF(W(k)),

where q is the stepsize. For example, in feedforward neural network models, error
backpropagation implements gradient descent in a distributed fashion. The dynamics of
such a procedure traces out a path in the parameter space which generally converges to
local minima. If there is noise in the sample set provided, then the calculated gradient
direction may be erroneous and one cannot, in general, say how the algorithm behaves.

In stochastic algorithms, the next point in the parameter space is picked randomly (based
on the current point and the value of the criterion function). For example, with the criterion
function defined by (5), after each sample, we can employ the Robbins-Munro algorithm:

266 P S Sastry and M A L Tlzathachar

where the stepsize q k satisfies r)k 2 0, rj$ < Qo (Kushner & Yin 1997;
Borkar 1998). This can be implemented if Y (. , .) is differentiable and an explicit
expression for the above gradient is available. Otherwise we can approximate the gradient
by finite difference and use, e.g., the Kiefer-Wolfowitz procedure (Kiefer & Wolfowitz
1952). The procedure converges to a local minimum under some conditions on the noise
etc. In these algorithms also, the search is in the parameter space though the choice of next
point is random because it depends on the randomly drawn next pattern (also, there may be
noise in the classification of X (k)) .

An alternative approach for stochastic search is provided by the learning automata
models. These algorithms maintain, at each instant k , a probability distribution, say, p(k)
over the parameter space. The parameter vector at instant k , W(k) , is a random realisation
of this distribution. The (noisy) value of the criterion function at this parameter value is
then obtained and is used to update p(k) into p(k + 1) by employing a learning algorithm.
The objective of the learning algorithm is to make the process converge to a distribution
that chooses the optimal parameter vector with arbitrarily high probability. Thus, here the
search is over the space of probability distributions. The random choice of W(k) from p(k)
can allow for sufficient exploration of the parameter space. Unlike stochastic approxima-
tion based techniques (or other gradient descent methods), here we do not need to explicitly
estimate any gradient information and hence these algorithms are numerically more stable.
In the rest of this paper we present a few such learning algorithms for pattern classification
using learning automata.

r]k = 00 and

2. Learning automata

In this section we briefly explain learning automata (LA) models. The reader is referred to
Narendra & Thathachar (1989) for more details.

A learning automaton is an adaptive decision making device that learns the optimal
action out of a set of actions through repeated interactions with a random environment.
Based on the cardinality of the action set, two kinds of learning automata are distinguished:
finite action set learning automata (FALA) and continuous action set learning automata
(CALA).

I

2.1 Finite action set learning automata

In a FALA the number of actions available is finite. Let A = {al , . .'. , a'}, r < 00, be
the set of actions available. The automaton maintains a probability distribution over
the action set. At each instant, k , the automaton chooses an action cq E A, at random,
based on its current action probability distribution, p(k) E R', k = 0,1, Thus,
p(k) = [p l (k) . - .pr(k)IT E R', with p i (k) = Prob[a(k) = q], Yk. The action chosen by
the automaton is the input to the environment which responds with a reactipn, P (k) .
This reaction is stochastic and is also called the reinforcement. We have P(k) E R C_
[O, 13, 'dk> where R is the set of possible reactions from the environment. If R = (0 , 1)
then the environment is called P-model; if R = [0,1] then it is called S-model; and
if R = [PI,. . . , ,@} then it is called Q-model. In all cases, higher values of the
reinforcement signal are assumed more desirable. Let ,Ti be the distribution from
which P(k) is drawn when a (k) = ai, 1 5 i 5 I*. Let di denote the expected value of
P (k) given a (k) = ~i (i.e., the expected value of ,Ti). Then di is called the reward

Learning automata algorithms for pattern classification 267

probability2 associated with action Qi, 1 5 i 5 r. Define the index nz by

dm = maxi(di}.

Then the action am is called the optimal action.
In the above discussion, we have implicitly assumed that the distributions ,Ti and hence

di, 1 5 i 5 r, are not time varying and thus the identity of the optimal action is also not
time varying. In this case the environment is said to be stationary. If the distribution of the
random reaction from the environment for a given choice of action is time varying then the
environment is said to be nonstationary. In this section we consider only stationary
environments. In the next two sections where LA systems are used for pattern classification
we will be considering some nonstationary environments.

The learning automaton has no knowledge of the distributions ,Ti or of the reward
probabilities. The objective for the automaton is to identify the optimal action; that is, to
evolve to a state where the optimal action is chosen with probability arbitrarily close to
unity. This is to be achieved through a learning algorithm that updates, at each instant k , the
action probability distribution p(k) into p(k + 1) using the most recent interaction with the
environment, namely, the pair (a(k) , ,B(k)). Thus if T represents the learning algorithm,
then, p(k + 1) = T(p(k), a(k) , P (k)) . The main problem of interest here is the design of
learning algorithms with satisfactory asymptotic behaviour. We are interested in algorithms
that make p m (k) converge to a value close to unity in some sense.

DEHNITION 1
A learning algorithm is said to be .+optimal if given any c > 0, we can choose parameters
of the learning algorithm such that with probability greater than 1 - E ,

liminfpm(k)> 1 - E .
k+oo

We will be discussing €-optimal learning algorithms here. We can characterise 6-optimality
in an alternative way that captures the connection between learning and optimisation.
Define average reward at k , G(k) , by

G(k) = E[P(k)lP(k)l

DEFINITION 2
A learning algorithm is said to be €-optimal if, given any E > 0, it is possible to choose
parameters of the algorithm so that

lim inf EG(k) > d,7z - c.
k - w

It is easily seen that the two definitions are equivalent. Thus, the objective of the learning
scheme is to maximise the expected value of the reinforcement received from the
environment. In the remaining part of this section we present three specific learning algo-
rithms which are used later on.

This name has its origin in P-model environments where di is the probability of getting a reward (Lee, ,8 = 1)
with action ai.

268 P S Sastry and M A L Thathachar

2. la Linear reward inaction (LR-I) algorithm: This is one of the most popular algorithms
used with LA models. This was originally described in mathematical psychology literature
(Bush & Mosteller 195 8) but was later independently rediscovered and introduced with
proper emphasis by Shapiro & Narendra (1969).

Let the automaton choose action ai at time k. Then p(k) is updated as:

where 0 < X < 1 is the stepsize parameter and ei is a unit probability vector with ith
component unity and all others zero. To get an intuitive understanding of the algorithm,
consider a P-model environment. When P(k) = 1, (i.e., a reward from the environment), we
move p(k) a little towards ei when oli is the chosen action, thus incrementing the probability
of choosing that action and decrementing all others. When P (k) = 0, (i.e., a penalty from the
environment), the probabilities are left unchanged. Hence the name of t.he algorithm.

L R - ~ is known to be €-optimal in all stationary random environments (Narendra &
Thathachar 1989). That is, given any E > 0, we can choose a A* > 0 such that for all
X 5 A", with a large probability, asymptotically pm(k) will be greater than 1 - E . LR-I is
very simple to implement and it results in decentralised learning in systems consisting of
many automata (Sastry et a2 1994). However, in such cases it can find only local minima
(see the next section) and it may converge rather slowly.

2.lb Pursuit algorithm: This belongs to the class of estimator algorithms (Thathachar &
Sastry 1985, Rajaraman & Sastry 1996) that were originally proposed to improve the speed
of convergence. This algorithm typically converges about 10 to 50 times faster than LR-I.

This improvement' in speed is bought at the expense of additional computation and
memory requirements. Here, the automaton maintains, in addition to the action probabi-
lities, twomorevectors,Z(k)=[Zl(k), . . . ,Z,(k)lTandB(k)=[B1(k), . . . ,B,(k)]T.Zj(k) and
Bi(k) represent respectively, the number of times action cq is chosen till k and the total
amount of reinforcement obtained with ai till k , 1 5 i 5 r. Then, a natural estimate of the
reward probability of ith action, di, is i j (k) = Bi(k) /Zi(k) , which is used in the algorithm to
update the action probabilities. The algorithm also needs to update the vectors Z (k) and
B(k) and it is specified below.

Let a(k) = aj and let P (k) be the reinforcement at k. Then,

&(k) = Bi(k - 1) 3- P (k) ,
Zi(k) = Zi(k - 1) + 1,

Bj(k) = Bj(k - I), 'v'' # i ,
Zj(k) = Zj(k - l), 'dj # i,

Let the random index H be defined by

Then,

Learning automata algorithms for pattern classification 269

where X(0 < A < 1) is the stepsize parameter and e H is the unit probability vector with Hth
component unity and all others zero. By the definition of the random index H , QH is the
current estimated best action and (18) biases p(k + 1) more in favour of that action. Since
the index H keeps changing as the estimation proceeds, the algorithm keeps pursuing the
current estimated best action. A special feature of the algorithm is that the actual
reinforcement, P (k) does not appear in the updating of p(k). Hence P(k) can take values in
any bounded set unlike the case of LR-I where P (k) has to be in [0,1] to ensure that
p (k + 1) is a probability vector (see (15)). The pursuit algorithm and the other estimator
algorithms are c-optimal in all stationary environments.

I

2.2 Continuous action set learning automata

so far we have considered the LA model where the set of actions is finite. Here we consider
LA whose action set is the entire real line. To motivate the model, consider the problem of
finding the maximum of a function f : R 3 R, given that we have access only to noisy

- function values at any chosen point. We can think off as the probability of rnisclassification
with a single parameter discriminant function. To use the LA model for this problem, we can
discretise the domain off into finitely many intervals and take one point from each interval
to form the action set of the automaton (Thathachar & Sastry 1987) (see fj 3 below). We can
supply the noisy function value (normalised if necessary) as the reinforcement. This can
solve the optimisation problem but only at a level of resolution which may be poor, based on
the coarseness of the discretisation. Also, if we employ too fine a level of discretisation, the
resulting LA will have too many actions and the convergence rate will be poor.

A more satisfying solution would be to employ an LA model where the action set can be
continuous. Such a model, called continuous action-set learning automaton (CALA) will be
discussed in this subsection.

The action set of CALA is the real line. The action probability distribution at k is
N(,u(k) , ~ (k)) , the normal distribution with mean p (k) and standard deviation a(k). At each

- instant, the CALA updates its action probability distribution (based on its interaction with
the environment) by updating p (k) and a&), which is analogous to updating the action
probabilities by the traditional LA. As before, let a(k) E R be the action chosen at k and let
P (k) be the reinforcement at k . Here, instead of reward probabilities for various actions, we
now have a reward function, f : R + R, defined by

We shall denote the reinforcement in response to action x as ,Bx and thus

The objective for CALA is to learn the value of x at whichf attains a maximum. That is, we
want the action probability distribution, N (p (k) , a@)) to converge to N(x, , 0) where xo is a
maximum off. However, we do not let a(k) converge to zero to ensure that the algorithm
does not get stuck at a nonoptimal point. So, we use another parameter, ae > 0, and keep
the objective of learning as a(k) converging to at and p (k) converging to a maximum off.
By choosing ot sufficiently small, asymptotically CALA will choose actions sufficiently
close to the maximum with probability sufficiently close to unity.

The learning algorithm for CALA is described below. Since the updating given for a(k)
does not automatically guarantee that ~ (k) > 01, we always use a projected version of

~

270 P S Sastry and M A L Thathachar
1

,
a(k), denoted by @(a(k)), while choosing actions. Also, CALA interacts with the
environment through choice of two actions at each instant.

At each instant k , CALA chooses an x (k) E R at random from its current distribution
N (p (k) , $(a(k))) where 4 is the function specified below. Then it gets the reinforcement
from the environment for the two actions: p (k) and x (k) . Let these reinforcements be ,8,
and ,Ox. Then the distribution is updated as follows:

=-;

where

and

e X is the step size parameter for learning (0 < X < l),
e C is a large positive constant, and
e 04 is the lower bound on standard deviation as explained earlier.

As explained at the beginning of this subsection, this CALA can be used as an
optimisation technique without discretising the parameter space. It is similar to stochastic
approximation algoiithms (Kushner & Yin 1997; Borkar 1998) though here the randomness
in choosing the next parameter value makes the algorithm explore better search directions.
For this algorithm it is proved that with arbitrarily large probability, p (k) will converge
close to a maximum off(.) and #(a(k)) will converge close to al, if we choose X and at
sufficiently small (Santharam 1994; Santharam et al 1994).

3. A common payoff game of automata for pattern classification

In this section and the next we will present models using several learning automata for
pattern classification. All the algorithms presented here are proved to converge (in some
suitable sense) to the optimal solution. To keep the presentation simple, we will not state
any of the convergence results in a precise form nor present any proofs. However, we will

Recall from 3 1 that we pose the pattern classification problem as follows. Let g(X, W)
with X the feature vector and W the parameter vector, be the discriminant function. We
classify a pattern using the classification rule given by (2). The form of g(. , .) is assumed
known (chosen by the designer). The optimal value for the parameter vector is to be
deterrnined by making use of a set of (possibly noisy) iid samples from the pattern classes
which are preclassified. We are interested in learning W that maximises

'

provide references for each algorithm where the convergence results are proved. 1
'

p(W) = Prob[g(., W) correctly classifies a random pattern]. (21)

F is defined over R" if there are n parameters and we are interested in finding W that
globally maxirnises 8'. Define

Learning automata algorithms for pattern classification 27 1

Y(X,W) = 1, if g(x ,W) > 0,
= 0, otherwise.

For a sample pattern X, define

t (X) = 1, if label on X is as Class-1,

(23) = 0, otherwise.

Now consider the function F (-) defined by

FtW) = E I { t (X) = Y (X , W)) ,

where E denotes the expectation with respect to distribution of patterns. Since the samples
are iid, this F will be same as if t (X) defined above is the true class of X. When there is
noise, the F defined above takes care of any pattern noise that is due to the overlapping of
class conditional densities3. However, if there are random mistakes in the classification of
training samples, then the F (-) defined above will only give the probability that the
classification of a random pattern by the system agrees with that of the teacher. But we
want to actually maximise the probability of correct classification. As defined earlier, let
F(W) be the probability of correct classification with parameters W and let p be the
probability of correct classification by the teacher (which is assumed to be independent of
the class to which the pattern belongs). Then,

Thus, as long as p > 0.5, F(W) and F(W) have the same maxima and hence it is
sufficient to maximise F.

In the above we have assumed a uniform classification noise. That is, the probability of
the teacher correctly classifying a pattern is same for all patterns. Some of the automata

~ algorithms discussed here can also handle the more general case where the probability of
teacher correctly classifying X is p (X) as long as p(X)> 0.5, W, for certain classes of
discriminant functions (Nagendra 1997).

3. I Common payof game of LA

As briefly outlined in fj 2.3, a single automaton is sufficient for learning the optimal value
of one parameter. But for multidimensional optimisation problems we need a system
consisting of as many automata as there are parameters. Here we consider the case where
these automata are involved in a cooperative game.

Let A1 , . . . ,AN be the automata involved in an N-player game. In the teminology of
Game Theory, the choices or pure strategies of each player correspond to the set of actions

current mixed strategy adopted by the corresponding player. Each play of the game consists
of each of the automata players choosing an action and then getting the payofs

of each automaton. The action probability distribution of an automaton represents the

It may be noted that this is the case in most real pattern classification problems. The sample patterns are
obtained from the respective physical processes that are sought to be distinguished rather than be drawn at
random from the feature space and classified by an ‘optimal’ decision rule.

272 P S Sastry and M A L Thathachar

(reinforcement) from the environment for this choice of actions by the team. The game we
consider is a common payoff game and hence all players get the same payoff. Let
p1 (k)) . . .) p,(k) be the action probability distributions of the N automata. Then, at each
instant k, each of the automata, Ai, chooses an action, aii(k), independently and at random
according to pi(k), 1 5 i 5 N . This set of N actions is input to the environment which
responds with a random payoff, P (k) which is supplied as the common reinforcement to all
automata. The objective for the team is to maximise the payoff. Define

d(x1,. . . ,XN) = E[P(k)ld((k) =xi, 1 5 i 5 N] . (26)

If A1, . , . , A N have all finite action sets then we call d(x1) . . . , x ~) the reward probability for
that choice of actions, In this case, we can represent the reward probabilities as a hyper-
matrix D = [djl...jN] of dimension rl x - + . x r N , where

djl...jN = E[P(k)lai'(k) = a;,, 1 5 i 5 N] . (27)

Here {a:) . . . , a!,} is the set of actions of automaton, Aj, 1 5 i 5 N . D is called the reward
probability matrix of the game and it is unknown to the automata. The automata are to
evolve to the optimal set of actions through multiple interactions with the environment (ie.,
repeated plays of the game) and updating of their action probability vectors using a
learning algorithm. For this case of a game of finite action set automata, the action a& is
the optimal action of automaton Ai, 1 5 i 5 N , if

where the maximum is over all possible values of the indices. It may be noted here that for
any single automaton in the team, the environment is nonstationary. This is because the
reinforcement to any automaton depends also on the choice of actions by the other
automata.

In a similar manner, we can consider a common payoff game played by CALA also.
Then the action set of each automaton is the real line, d(., . . . , .) is a function from RN to
R, and we are considering a maximisation problem over N-dimensional real Euclidean
space. The objective for the automata team again is to find a maximum of d using a
learning algorithm. It may be noted again that the automata have no knowledge of the
function d and all they get from the environment is the common reinforcement, ,8 (whose
expected value for a given choice of actions equals the value of function d at the
corresponding parameter values).

3.2 Pattern classijication with finite action set LA

We need to learn the optimal value of the parameter vector, W = [wl) . . .) W N] E RN. Let
Wi E V' c R. In any specific problem, knowledge of the parametric form chosen for the
discriminant function and knowledge of the region in the feature space where the classes
cluster, is to be utilised for deciding on the sets Vi. Partition each of the sets Vi into finitely
many intervals 9, 1 I j 5 rj. Choose one point, vj, from each interval $, 1 < j 5 ri,
1 5 i 5 N . For learning the N parameters we will employ a team of N automata,
A l) . . . >AN. The action set of ith automaton is { vi, . , .) vii}. Thus the actions of ith
automaton are the possible values for the ith parameter, which are finitely many due to the
process of discretisation.

273 Learning automata algorithms for pattern cZass@cation

NOW consider the following common payoff game played by these N automata, At each
instant k, each automaton Ai chooses an action ai((k) independently and at random
according to its action probabilities, pi@). Since actions of automata are possible values for
parameters, this results in the choice of a specific parameter vector, say W (k) by the
automata team. The environment classifies the next sample pattern using this parameter
vector, and the correctness or otherwise of this classification is supplied to tlie team as the
common reinforcement, p(k) . Specifically,

where X(k) is the sample pattern at k and Y and t are as defined by (22) and (23).
It is easy to see from (24) and (29) that the expected value of the common payoff to the

team at k is equal to F(W(k)) where W(k) is the parameter vector chosen by the t e rn at k.
Now it follows from (25), (26)-(29) that the optimal set of actions for the team
(corresponding to the maximum element in the reward matrix) is the optimal parameter
vector that maximises the probability of correct classification. Now what we need is a
learning algorithm for the team which will make each automaton in the team converge to
its optimal action. We will see below that each of the algorithms for a single automaton
specified in 8 2 can easily be adapted to the team problem.

Before proceeding further, it should be noted that this method (in the best case) would only
converge to the classifier that is optimal from among thefinitely many classifiers in the set n:, Vi. This can only be an approximation to the optimal classifier due to the inherent loss
of resolution in the process of discretisation. While this approximation can be improved by
finer discretisation, it can result in a large iiumber of actions for each automaton and
consequently, slow rate of convergence. One can also improve the precision in the learnt
classifier by progressively finer discretisation. That is, we can first learn a rough interval for
the parameter and then can choose the Vi set as this interval and further subdivide it and so
on. However, the method is most effective in practice mainly in two cases: when there is

- sufficient knowledge available regarding the unknown parameters so as to make the sets V1
small enough intervals or when it is sufficient to learn the parameter values to a small degree
of precision. Since we impose no restrictions on the form of the discriminant function g(. , .),
we may be able to choose the discriminant function so as to have some knowledge of the sets
V1. (This is illustrated through an example later on.) In $3.3 we will employ a team of CALA
for solving this problem where no discretisation of parameter ranges would be necessary.

3.2a LR-I algorithm for the team: The linear reward inaction algorithm presented in § 2.1
is directly applicable to the automata team. Each automaton in the team uses the
reinforcement that is supplied to it to update its action probabilities using (15). This will be
a decentralised learning technique for the team. No automaton needs to know the actions
selected by other automata or their action probabilities. In fact each automaton is not even
aware that it is part of a team because it is updating its action probabilities as if it were
interacting alone with the environment. However, since the reinforcement supplied by the
environment depends also on the actions selected by others, each automaton experiences a
nonstationary environment.

In a common payoff game, if each automaton uses an LR-I algorithm with sufficiently
small step size, then the team converges with arbitrarily high probability to a set of actions
that is a mode of the reward matrix. The concept of a mode is defined below.

274 P S Sastry and M A L Thathachar

DEFINITION 3
The choice of actions, aji, 1 5 i 5 N , is called a mode of the reward matrix if the following
inequalities hold simultaneously.

,
dj l . . . j N 2 max{dfj 2 . . . j N } ,

t

where the maximum is over all possible values for the index, t.
The mode is a Nash equilibrium in the common payoff game. In our case, from the point

of view of optirnisation, it amounts to a local maximum. If the reward matrix of the game is
unimodal then the automata team using the LR-I algorithm will converge to the optimal
classifier. For example, if the class conditional densities are normal and if the discriminant
function is linear, then the g m e matrix would be unimodal. Another example where the
automata team with LR-I algorithm is similarly effective is that of learning simple conjunc-
tive concepts (Sastry et a1 1993; Rajaraman & Sastry 1997). However, in general, with this
algorithm the team can converge only to a local maximum of F (.) defined by (24) (Sastry
et al 1994) and, depending on the specific application, it may or may not be acceptable.

3.2b Pursuit algorithm for the team: We can adopt the pursuit algorithm presented in
$2.2 for the automata team problem. However, if each automaton simply uses its
reinforcement to estimate its effective reward probabilities, the algorithm will not work
because each automaton experiences a nonstationary environment. We need to keep an
estimated reward probability matrix from which each automaton can derive a quantity
which is analogous to the di used in the pursuit algorithm in 5 2.2. The complete algorithm
is given below. We use hypermatrices B and 2 for updating the estimated reward
probability matrix. The vector ,!.? here serves for automaton Ai the same purpose as the
vector d^ €or the algorithm in $2.2.

Let a'@), the action chosen by the ith automaton at k , be aji, 1 5 i 5 N , and let P (k) be
the reinforcement. Then

For 1 5 i 5 N , update the vectors Ei by

Let the random indices H (i) , 1 5 i 5 N be defined by

Learning automata algorithms for pattern classiJCication 275

Then, the action probabilities are updated as:

pi(k + 1) = p j (k) + X(eH(i) - ~i(k))> 1 L i L N, (33)

where X is the step size parameter and eH(i) is the unit probability vector with H(i)th
component unity and all others zero.

It is proved by Thathachar & Sastry (1987, 1991) that the automata team employing this
algorithm converges to the optimal set of actions even if the game matrix is not unimodal.
Thus the automata team with pursuit algorithm learns the globally optimal classifier.

As is easy to see, this algorithm is not decentralised unlike the case with the LR-]
algorithm. To maintain the estimated reward probability matrix, we need to know the
actions chosen by all the automata at that instant. The algorithm is computationally not
very intensive. Only one element of the estimated reward probability matrix changes at
each instant and hence one can make obvious computational simplifications while updating
the vectors E . However, as the dimensionality of the problem increases, the memory
overhead becomes severe due to the need to store the estimated reward probability matrix.
However, this algorithm will make the team converge to the maximum element in the
reward probability matrix in any general game with common payoff and thus ensure
convergence to the global maximiser of probability of collect classification.

i?
r'

3.3 Pattern class@cation with CAM

As earlier, we use a team o€ N learning automata, A l , . . . ,AN, for learning an N -
dimensional parameter vector. The actions of the automata will be possible values for the
parameters. We use N continuous action-set learning automata to lean the N components
of the pararneter vector. Since the action set of a CALA is the real line, we need not
discretise the parameter space. Each automaton will be using a normal distribution for the
action probability distribution as described in 5 2.3. The N automata will independently
choose actions which results in the choice of a parameter vector by the team. As in the
previous section, we classify the next pattern with the chosen discriminant function and
supply a 0/1 reinforcement to the team, depending on whether the classification agrees with
that of the teacher or not. Each of the automata uses the algorithm described in 52.3 to
update the action probability distribution. This is once again a completely decentralised
learning scheme for the team. For the algorithm described by (19) in Fj 2.3, at each instant
the automaton needs to interact with the environment twice. The same situation holds for
the team also and thus we classify each pattern with two different parameter vectors to
supply the two reinforcement signals needed.

It is proved that the team will converge (with arbitrarily large probability) to a parameter
vector value that is arbitrarily close to a local maximum of the function F (-) defined by
(24) (Santharam 1994).

3.4 Simulations
k-4

In this section we present results obtained with the automata team models presented earlier
on some pattern classification problems. We present results with the pursuit algorithm and
with CALA. For the pursuit algorithm, we need to discretise the parameters and the
algorithm finds the global maximum. In the case of CALA, convergence to only local
maxima is assured but we need not discretise the parameters. As will be seen below, by

276 P S Sastry and M A L Thathachar

proper choice of initial variance in the CALA algorithm we can obtain very good
performance.

We present three problems and all three have 2-dimensional feature vectors. In the first
two, the discriminant function is linear while in the third problem we use a quadratic
discriminant function. In all problems the prior probabilities of the two classes are equal.
Let p(Xlwi) , i = 1 , 2 denote the two class conditional densities.

Example 1. p(X(w1) has a uniform distribution over the compact set [2,4] x [2,4] and
p(Xlw2) has a uniform distribution over the compact set [3.5,5.5] x [3.5,5.5].

Example 2. The class conditional densities for the two classes are given by Gaussian
distributions:

m2 = [3.0,3.0IT,

For these two problems we use the same discriminant function whose general form is
given by

g(X, W) = 1 - X l / W - x 2 / w 2

where the parameters w1 and w2 are unknown. We choose this form for the linear
discriminant function to illustrate the fact that we can handle discriminant functions that
are nonlinear in its parameters.

In example 1 with uniform densities, the weight values for the optimal linear discriminant
function are w1 = 7.5 and w 2 = 7.5. The theoretically computed value of the minimum
probability o f misclassification that can be achieved, with the optimal discriminant
function, in the example is equal to 0.06.

In example 2 with Gaussian densities, the weight values for the optimal linear discri-
minant function are w1 = 5.0 and w2 = 5.0, for which the minimum probability of
misclassification is equal to 0.16. The form of the discriminant function and the contours of
the class conditional densities for these two problems are provided in figures 1 and 2.

Example 3. The class conditional densities for the two classes are given by Gaussian
distributions:

P (X l W 1) = “m1, El),
where ml = [2.0, 2.0IT,

1.0 -0.25
-0.25 1.0 E l = [

Learning automata algorithms for pattern classification 277

Figure 1. Class conditional densities and the form of the optimal discriminant
function in example 1.

For this problem, a quadratic discriminant function is considered. The form of the
discriminant function is

Figure 2. Class conditional densities and the form of the optimal discriminant
function in example 2.

21 8 P S Sastry and M A L Thathachar

XZ

Figure 3. This figure shows the form of the discriminant function used in example 3.
It is a parabola specified by three parameters m,xo and a.

where W = (m,xo, a) is the parameter vector. This is a parabola described by three
parameters m, xo and a. A sketch of this parabola is shown in figure 3. This form of the
equation chosen for the parabola makes it easier to visualize the parabola in terms of the
three parameters. As mentioned earlier, in our method we can choose any form for the
discriminant function. With the specific form chosen, it is easier to guess the ranges of the
parameters based on some knowledge of where in the feature space the two classes cluster.
It would be considerably more difficult to guess the parameter ranges if we had chosen a
general quadratic expression for our discriminant function. Once again it may be noted that
the discriminant function is nonlinear in its parameters.

The parameters of the optimal discriminant function for the above pattern recognition
problem (example 3) are:

m = 1.0 xo = 3.0 a = 10.0.

A sketch of the optimal discriminant function is shown in figure 4.

3.4a Learning automata team with pursuit algorithm: For all the three problems, 300
samples of each class are generated. At each instant, one of the patterns from this set is
selected at random and given to the learning system. The learning parameter, A, is set at 0.1

In the first two examples, we used a team of two automata, one for each parameter. The
range of the parameters was chosen to be [0, 101 which was discretised into five intervals.
Thus each automaton had five actions.

In example 1, 10 experiments were tried. In seven out of 10 runs, the team converged to
the optimal actions. The average number of iterations needed for the probability of the
optimal action in each automaton to be greater than 0.99 was 830, averaged over the seven
runs. In the other three runs, the team converged to a nearby line.

In example 2, the team converged to the optimal actions in eight out of ten experiments
and the average number of iterations for convergence was 930. In the other two runs, the
team converged to a good suboptimal solution.

In example 3, a team of three automata was used. The ranges for the parameters, m, xo
and a were taken to be [O S , 1.51, [2, 61 and [l, 101 respectively. The range of each

-4

Learning automata algorithms for pattern classification

r

X2

i s c r i in i n a n t

1 2 3 4 5 8 7 1

x,
Figure 4. Class conditional densities and the form of the optimal di riminant
function in example 3. The discriminant function used in this example is a parabola with
3 unknown parameters.

279

parameter was discretised into five levels. In seven out of 10 experiments, the team
converged to the optimal parameters. In the other three runs, only one of the three automata
converged to a wrong action. The average number of iterations needed for convergence was
1970.

3.4b CALA team: For the first two problems we use a team of two continuous action set
automata, one for each parameter w1 and w2. For each problem, 300 samples of each class
are generated from which a pattern is selected at random for every iteration during training.
We also generated 50 sample patterns from each class for testing the optimality of the
learned parameters. The results of the simulations for these two problems are presented in
tables 1 and 2. We have chosen 01 = 0.3 for both problems, and step size q = 0.005 for
example 1 and 7 = 0.01 for example 2. In all the simulations, the value of the variance
parameter CT in each CALA converged to some value such that $(c) was close to q. In table
1 the number of iterations corresponds to the first instant (that is a multiple of 100) after
which the number of classification errors for example 1 on the test set is less than 7 (out of

Table 1. Results obtained using CALA team with example 1.

Initial values Final value

P i .:, CT: % Error # Iterations % Error Pt)

5 5 9 9 44 1600 6
5 5 11 11 44 2200 6
5 8 8 8 28 1900 6
5 8 12 12 28 1300 6
9 9 8 8 38 1900 6
9 9 12 12 38 1300 6

8 5 12 12 28 2500 6
8 5 9 9 28 700 5

280 P S Sastry and M A L Thnthachnr

Table 2. Results obtained using CALA team with example 2.

Initial values Final value

Iterations
-

2
2
8
8
2
2
7
7

2
2
8 .
8
7
7
3
3

49
49
46
46
40
40
35
35

2200
1300
1900
3400
1000
4500
5500
I900

% Error

15
16
13
16
14
13
16
16

the total of 100 test patterns), and that for example 2 is less than 17 (out of 100). It may be
recalled that the minimum probability of misclassification achievable by the optimal
discriminant function for example 1 was 0.06 and that for example 2 was 0.16. In the
simple CALA algorithm, we can guarantee only a local convergence. However, from the
tables given, one can see that the algorithm converges to a classifier with acceptably small
error from many different starting points.

For the third problem we use a team of three continuous action set learning automata. As
in the previous example, 300 sample patterns are generated from each class. Also a test set
consisting of 100 samples is generated from the two classes. In this problem it is difficult tQ
analytically compute the minimum probability of misclassification. The number of
misclassifications on the generated test set of patterns, with the parameter values set to
those values corresponding to the optimal discriminant function (mentioned above), was
found to be 11 (out of a total of 100 test patterns). The results of the simulations are
provided in table 3, for 3 different initial values.

4. Three-layer network consisting of teams of automata for pattern classification

In the previous section we have considered a common payoff game of automata and
showed how it can be utilised for pattern classification. There we assumed that the designer
has decided on a parametric representation for the discriminant function, g(W, X). The
algorithm itself is independent of what this function is or how it is represented. For
example, we could have represented it as an artificial neural network with parameters being
the weights and then the algorithm would be converging to the ‘optimal’ set of weights. By
making a specific choice for the discriminant function, we can configure the automata team
more intelligently and this is illustrated in this section. We will only be considering teams
of finite action learning automata here though the method can be extended to include

Table 3. Results obtained using CALA team with example 3.

Initial values Final value

P i P i 4 4 % Error # Iterations % Error

1 0.4 6 6 6 4 32 3700 11
5 2 12 6 6 4 45 6400 12
4 2 12 6 6 4 42 3400 12

Learning automatn algorithms for pattern classijication 28 1

CALA. The material in this section follows Phansalkar (1991) and Thathachar &
Phansalkar (I 995).

In a two-class PR problem, we are interested in finding a surface that appropriately
divides the feature space which may be assumed to be a compact subset of RN. Such a
surface is well approximated by a piecewise linear function (Lippmann 1987) and can be
implemented using linear threshold units in a three layer feedforward network. In this
network the first layer units learn hyperplanes. Units in the second layer perform the AND
operation on the outputs of some selected first layer units and thus learn convex sets with
piecewise linear boundaries. The final layer performs an OR operation on the outputs of the
second layer units. Thus this network, with appropriate choice of the internal parameters of
the units and connections, can represent any subset of the feature space that is expressed as
a union of convex sets with piecewise linear boundaries. The network structure is chosen
because any compact subset of RN with piecewise linear boundary can be expressed as a
union of such convex sets. We now describe how we can configure such a network with
each unit being a team of automata.

Let the first layer consist of M units and let the second layer have L units. That means we
can learn at most M distinct hyperplanes and L distinct convex qeces. The final layer
consists of a single unit. As before, let X (k) = [XI (k) , . . . , X N (k)] E RN be the feature
vector.

Denote by Uj, 1 5 i 5 M , the units in the first layer, each of wliich should learn an N -
dimensional hyperplane. A hyperplane in RN can be represented by (N + 1) parameters - to
represent the norinal vector and the distance from the origin of the hyperplane. Hence we
will represent each unit, Ui, 1 _< i 5 M , by an (N +])-member team of automata, A@,
0 5 j 5 N . The actions of automaton Alj are the possible values of thejth parameter of the ith
hyperplane being learnt. Since we are using finite action set automata here4, as in 3.1, we
discretise the ranges of parameters for making up the action sets of automata. Let Wii be the
set of actions of automaton Ad whose elements will be denoted by Wljs, 1 5 s 5 rg, 0 5 j 5 N ,
1 L: i 5 M . Let pij(k) be the action probability vector of A, with components p i j ~ and

Prob[aij(k) = " [j s] = Pijs(k),

where oc~(k) is the action chosen by the automaton A, at time k. The output of unit Ui at k
is y@) where

= 0, otherwise. (34)

Let Vi be the ith second layer unit that has connections with n(i) first layer units,
1 5 i 5 L. The n(i) first layer units that are connected to Vi are prefixed. Thus Vj can learn
a convex set bounded by ntmost n(i) hyperplanes. The unit Vi is composed of a team of n(i)
automata Bv, 1 5 j 5 n(i), each of which has two actions: 0 and 1. The action probability
distribution of Bij at k can be represented by a single real number qij(k) where,

We could also use a team of CALA for each unit in the first layer. We use a FALA team here to demonstrate (in
the next subsection) how one can introduce a perturbation term to LR-1 type algorithms so as to converge to
global optimum.

282 P S Sastry and M A L Thathachar

and q (k) is the action selected by BQ at k. Let aj(k) be the output of Vi at instant k. ai(k) is
the AND of the outputs of all those first layer units which are connected to Vi and are
activated, i.e., zU(k) = 1. More formally,

a@) = 1, if y j (k) = 1 'dj, 1 < j 5 n(i) , such that q (k) = 1, (35)

= 0, otherwise. (36)

The third layer contains only one unit whose output is a Boolean OR of all the outputs of
the second layer units. Since here we want to learn a union of convex sets, no learning was
needed in the third layer.

This network of automata functions as follows. At each instant k , all the automata in all
the first and second layer units choose an action at random based on their current action
probability vector. That is, in each Ui, each of the automata AQ chooses an action a ~ (k)
from the set W, at random based on the probability vector pii(k). This results in a specific
parameter vector and hence a specific hyperplane being chosen b,y each Ui. Then, based on
the next pattern vector, X (k) , each unit Ui calculates its output yi(k) using (34). In each
second layer unit Vi, all the n(i) automata Bq choose an action zo(k) at random based on the
probability qd(k). Using these zq(k) and the outputs of first layer units, each Vj would
calculate its output ni(k) using (36). Using the outputs of the second layer units, the unit in
the final layer will calculate its output which is I if any q (k) is 1; and 0 otherwise. Let Y (k)
denote the output of the final layer unit which is also the output of the network. Y (k) = 1
denotes that the pattern is classified as class-1 and Y (k) = 0 denotes that the pattern is
class-2. For this classification, the environment supplies a reinforcement ,8(k) as

P (k) = I , if Y (k) = t (X (k)) ,
= 0, otherwise, (37)

where t (X (k)) is the classification supplied for the current pattern X (k) (cf. 5 3.1). P(k) is
supplied as the common reinforcement to all the automata in all the units and then all the
automata update their action probability vectors using the LR-1 algorithm as below.

For each i j , 0 5 j 5 N , 1 5 i 5 M , the probability vectors pij are updated as

Pij& + 1) =pijs(k) + XP(k) (l -pi&)), if aij(k) = wijs,

= pi j~ (k) (1 - A@(k)) , otherwise, (38)

For each i, j , 1 5 j 5 n(i), 1 5 i 5 L, the probabilities qij are updated as

qij(k + 1) = q&) + AP(k) (1- qi j (k)) , if q (k) = 1,
= q ~ (k) (1 - XP(k)) , otherwise. (39)

Let P(k) denote the internal state of the iietwork. This includes the action probabilities of
all the automata in all the units. That is, it includes all. pij and all qu. Define

Y(P) = E"@) lP(k) = PI * (40)
For this network of teams of automata, the learning algorithm given by (38) and (39) will

make P(k) converge to a local maximum off(.) . Thus the action probabilities of all the
automata will converge to values that would (locally) maximise the expected value of the
reinforcement.

Learning automata algorithms for pattern classiJication 283

Figure 5. The form of the discriminant function for the pattern classification problem
studied in example 4.

It is clear from the earlier discussion in 5 3 and from (37), that maximising the expected
reinforcement will result in maximising the probability of correct classification. Thus this
network will learn a classifier which locally maxiinises the probability of correct
classification.

4.1 Simulations

We consider two examples here to illustrate the three-layer network presented above. The
first one is an artificial problem, while the second one is on a real data set. For the first one
we consider a problem where the region in the feature space, in which the optimal decision
is class-1, is a convex set with linear boundaries. Once again we consider only 2-dimen-
sional feature vectors because it is easier to visualise the problem. Both these examples are
from Thathachar & Phansalkar (1995b).

Exampk 4. The feature vectors from the environment arrive uniformly from the set
[0,1] x [0, I]. The discriminant function to be learnt is shown in figure 5. Referring to the
figure, the optimal decision in region A is class-1 and that in region B is class-2. In region A,

Prob[X E Class-1] = 1 - Prob[X E Class-21 = 0.9,

and in region B,

Prob[X E Class-1] = 1 - Prob[X E Class-21 = 0.1.

The discriminant function to be learnt is

 X XI - ~2 > 01 AND [--XI + 2 x 2 > 01, '

where X = (X I ~ 2) ~ is the feature vector.
Since we need to learn only one'convex set, the network is made up of two first layer

units, U1 and U2, and one fixed second layer unit. The second layer unit performs AND
operation on the outputs of the first layer units. Each first layer unit has two automata. We
used two rather than three because the hyperplanes to be learnt pass through the origin.

284 P S Sastry and M A L Thathachar

Each of the automata has four actions which are the possible values of the parameters
to represent the hyperplanes. All four automata have the same action set given by
{-2, -1,l , 2). The parameter vector that represents a pair of hyperplanes through the
origin will have four components and hence a choice of action by each automaton
represents a parameter vector. In this problem, there are two sets of choices of actions by
the four automata (or parameter vectors) given by (-1,2,2, - 1) and (2, -1, -1,2) at
which the global optimum is attained. The learning parameter, A, is fixed at 0.005 for all
automata. The initial action probability distribution is uniform. That is, the initial
probability of each of the four actions is 0.25. Twenty simulation runs were conducted and
the network converged to one of the two sets of optimal actions in every run. The number
of samples generated is 500 and at each instant one pattern chosen randomly from this set
is presented to the network. The average number of iterations needed for the probability of
the optimal action to be greater than 0.98 for each automaton, is 10,922 steps. (A single run
of 20,000 steps took about 3.5 s of CPU time on a VAX 8810.)

Example 5. In this example, a 2-class version of the Iris data (Duda & Hart 1973) was
considered. The data was obtained from the machine learning databases maintained at
University of California, Irvine. This is a 3-class 4-feature problem. The three classes are
iris-setosa, iris-versicolor and iris-viginica. Of these, setosa is linearly separable from the
other two. Since we are considering only 2-class problems here, setosa was ignored and the
problem was reduced to that of classifying versicolor and viginica. The data used was 50
samples of each class with the correct classification.

The network consisted of 9 first layer units and 3 second layer units. Each first layer unit
has 5 automata (since this is a 4-feature problem). Each automaton had 9 actions which
were { -4, -3, -2, -1 ,O, 1 ,2,3,4) , Uniform initial conditions were used. The learning
parameters were 0.005 in the first layer and 0.002 in the second layer.

In this problem we do not know which are the optimal actions of the automata and hence
we have to measure the performance based on the classification error on the data after
learning.

For a comparison of the performance achieved by the automata network, we also
simulated a standard feedforward neural network where we used backpropagation with
momentum term (BPM) for the learning algorithm. The network has four input nodes (to
take in the feature vector) and one output node. We tried two and three hidden layers. For
the two hidden layer network we used 9 and 3 units in the hidden layers. For the three
hidden layer netmrk we used 8 nodes in each hidden layer. Initial weights for the network
were generated randomly. In the learning algorithm the learning parameter for the
momentum term was set at 0.9 and various values of the learning parameter for the gradient
term were considered and the best results are reported here.

Simulations were conducted for perfect data (0% noise) and noisy cases. Noise was
introduced by changing the known classification of the feature vector at each instant by a
fixed probability. Noise levels of 20% and 40% were considered. With 40% noise, each
sample has a probability of 0.6 of correct classification.

The results obtained are summarised in table 4. These are averages of over 10 runs.
The error reported in the table for the backpropagation algorithm is the root mean square
error while that for the automata network is the probability of misclassification. While they
cannot be directly compared, the perf0rmanc.e was about the same at the values reported.

The results show that in the noise free-case, the backpropagation with momentum
conlwges about 20% faster. However, this algorithm fails to converge even when only 20%

Learning automata algorithms for pattern cluss@cation 285

Table 4. Simulation results for IRIS data. The entry in the fourth column
refers to RMS error for BPM and probability of misclassification for LK-I.

Algorithm Structure Noise (%) Esros steps

BPM
BPM
BPM
BPM
BPM
BPM
LH-I
LR-I

9 3 1
9 3 1
9 3 1

8 8 8 1
8 8 8 1
8 8 8 1

9 3 I
9 3 1
9 3 1

0
20
40
0

20
40
0

20
40

2.0
-
-

2.0
-
-

0.1
0.1
0.15

66,600
No convergence
No convergence

65,800
No convergence
No convergence

7 8,000
143,000
200,000

noise is added. The learning automata network continues to converge even with 40% noise
and there is only slight degradation of performance with noise.

4.2 A globally convergent algorithm for the network of automata

In the three-layer network of automata considered above, all automata use the LR-1

algorithm (cf. (38) and (39)). As stated earlier, one can establish only the local convergence
result for this algorithm. In this subsection we present a modified algorithm which leads to
convergence to the global maximum.

One class of algorithms for the automata team that result in convergence to global
maximum are the estimator algorithms. As stated in $3.3, these algorithms have a large
memory overhead. Here, we follow another approach, similar to the simulated annealing
type algorithms for global optimisatioii (Aluffi-Pentini et a1 1985, Chiang et a2 1987), and
impose a random perturbation in the update equations. However, unlike in simulated
annealing type algorithms, here we keep the variance of perturbations constant and thus our
algorithm would be similar to constant heat bath type algorithms. Since a FALA learning
algorithm updates the action probabilities, introducing a random term directly in the
updating equations is difficult due to two reasons. First, it is not easy to ensure that the
resulting vector after the updating remains a probability vector. Second, the resulting
diflusion would be on a manifold rather than the entire space tlius making analysis difficult.
To overcome such difficulties, the learning automaton is parainetrised here. The automaton
will now have an internal state vector, u, of real numbers, which is not necessarily a
probability vector. The probabilities of various actions are calculated based on the value of
u using a probability generating function, g(. , .). The value of g(u, ai) will give the
probability with which the ith action is chosen by the automaton when the state vector is u.
Such learning automata are referred to as parametrised learning uutomata (PLA)
(Phansalkar 1991). The probability generating function that we use is given by

where u = (ul - . . u,)' is the state vector and p = (PI - - ep,)' is the action probability
vector.

we will now give the complete learning algorithm for the network of automata following
the same notation that was used earlier. Thus p+ is the probability of sth action, wgS,

286 P S Sastry and M A L Thathachar

of automaton A, which is the jth automaton in Ui, the ith first layer unit and so on.
The functioning of the network is the same as before. However, the learning algorithm
now updates the internal state of each automaton and the actual action probabilities
are calculated using the probability generating function. Suppose uu is the state vector
of automaton AQ and has components ucs. Similarly, vij is the state vector of automaton
B, and has components 2190 and v ~ l . Let gq(.) .) be the probability generating function
for automaton AQ and let &(.) .) be the probability generating function for automaton
B,. As indicated by (41), the various action probabilities, pijs and qij are now given by

The algorithm given below specifies how the various state vectors should be updated.
Unlike in (38) and (39), there is a single updating equation for all the components of
the state vector. P (k) is the reinforcement obtained at k, which is calculated as before
by (37).

For each i, j, 0 5 j 5 N , 1 5.i 5 M , the state vectors uij are updated as

For each i, j, 1 5 j 5 n(i) , 1 5 i 5 L , the state vectors vg are updated as

(44)
d In jjij

v& + 1) = vij,(k) + XP(k)- + Xh/(vij,(k)) + Jxsi j(k),
dvljs

where

1

The functions g i (.) .) and its partial derivatives are evaluated at (u&), a&)), the
current state vector and the current action of A,. Similarly, the functions S,(. , .) and its
partial derivatives are evaluated at (vy (k) , zij (k)) .
h‘(.) is the derivative of h(.) defined by

h(n) = -K(x - Ll)2n)

= 0, 1x1 L L1,
= -K(x + L1)2n)

x 2 L1)

x 5 - 4 1) (45 1
where K and L1 are real numbers and n is an integer, all of which are parameters of the
algorithm.
{sij(k)} is a sequence of iid random variables (which also are independent of all the
action probabilities, actions chosen etc.) with zero mean and varianace a2. CT is a
parameter of the algorithm.

In the updating equations given by (43) and (44), the h’(.) term on the right-hand side
(rhs) is essentially a projection term which ensures that the algorithm exhibits bounded
behaviour; and the s, term on the rhs adds a random walk to the updating. The P (k) term on
the rhs is essentially the same updating as the LR-1 given earlier. To see this, it may be
noted that

Learning automata algorithms for pattern classification 287

For this algorithm it is proved (Thathachar & Phansalkar 1995a) that a continuous-time
interpolated version of the state of the network, U, given by the states of all automata,
converges to a solution of the Langevin equation given by

dU = VH(U) + odW, (47)
where

and W is the standard Brownian motion process of appropriate dimension.
As is well-known, the solutions of the Langevin equation concentrate on the global

maximum of H as CT tends to zero. By the nature of the function h(.) , this means the
algorithm will converge to a state that globally maximises the expected value of the
reinforcement if the global maximum state vector is such that each component is less than
L1 in magnitude. Otherwise it will find a global maximum of H (which can be shown to be
in a bounded region) and the expected value of,reinforcement at this point would be greater
than or equal to that inside the bounded region allowed for the algorithm. For more
discussion and precise statement of this convergence result, the reader is referred to
Thathachar & Phansalkar (1995a).

4.2a Simulations with the global algorithm: Here, we briefly give results of simulations
with this algorithm on one example considered earlier in 5 4.1, namely, example 4.

In this example, we have seen that the global maximum is attained at two parameter
vectors (- 1,2 ,2 , - 1) and (2, - 1, - 1,2). One of the local maxima in that problem is given
by (l , l , l , l) . We have seen that the L R - ~ algorithm converges to the global maximum when
started with uniform initial conditions, that is, equal initial probabilities to all actions in all
automata. Here we pick the initial conditions such that the effective probability of the
parameter vector corresponding to the local maximum is greater than 0.98 and the rest of
the probability is distributed among the other parameter vectors. With this much of bias,
the LR-I algorithm always converged to the local maximum.

We try the globally convergent algorithm presented above with these initial conditions.
The parameters in the h(.) function are set as L1=3.Q, K=l.O, and n=2. The learning
parameter is set at 0.05. The value for CT is initially 10 and is reduced as

0 5 k 5 5000, a(k + 1) = 0.999o(k),

and is kept constant thereafter. (Here a(k) is the value of CT used at iteration k.)
Twenty simulations were done and each time the algorithm converged to one of the two

global maxima. The average number of iterations needed for convergence was 33,425. This
was with a set of 500 samples as in example 4. The time taken for one run of 50,000
iterations was 36 s (CPU time) on VAX 8810. This, of course, does not compare favourably
with the time taken by LR-1. The extra time seems to be mainly due to the fact that the
action probabilities are to be computed at each instant and are not directly stored. The extra
terms in the algorithm (the term for bounding the algorithm and the random term) do not

- ---

288 P S Sastry and M A L Thathachar

seem to slow down the algorithm much. A different choice of the probability generating
function may result in a faster algorithm. However, the higher computational time and
slower rates of convergence appear to be the price to be paid for convergence to global
maximum, as in all annealing type algorithms.

5, Discussion

In this paper we have considered algorithms based on teams of learning automata for
pattern classification. In all the algorithms, some parametric representation was chosen for
the discriminant function and the objective was to learn the optimal values of parameters
from the given set of preclassified samples. We have considered pattern classification
problems where no knowledge regarding the distribution of pattern classes is assumed and
further, there may be present both pattern noise and classification noise.

The criterion of optimality is maximising probability of correct classification. As
mentioned in I , algorithms that minimise mean square error do not necessarily maximise
probability of correct classification. The problem is to find a classifier, h, that minimises
F (.) given by (8) with a 0-1 loss function. While l (h (X) , y) is observable, F(h) is not and
hence we have to solve a regression problem. However, there are two additional complica-
tions here. Even if 12 is parameterised by a real vector and F (.) is differentiable, l (h (X) , y)
may not be differentiable. Hence algorithms (like stochastic approximations) that rely on
estimating the gradient information by perturbation methods, are not likely to be robust. In
addition, we may choose the structure of the classifier in such a way that i t is not easy to
define a gradient (e.g. the three-layer network of 5 4). The main strength of automata based
algorithms (and other reinforcement learning methods) is that they do not explicitly
estimate the gradient.

The essence of LA based methods is the following. Let 7-l be the space of classifiers
chosen. Then we construct an automata system such that when each of the automata
chooses an action from its action set, this tuple of actions corresponds to a unique classifier,
say h, from 2. Then we give 1 - l (h (X) , y) (which, for the 0-1 loss function, is simply
correctness or otherwise of classifiying the next training pattern with 12) as the
reinforcement. Since the automata algorithms guarantee to maximise expected reinforce-
ment, with iid samples the system will converge to an h that maximises F (.) given by (8).
The automata system is such that its state, represented by the action probability
distributions of all automata, defines a probability distribution over 7-1. It is this probability
distribution that is effectively updated at each instant. Thus the automata techniques would
be useful even in cases where X is not isomorphic to a Euclidean space (or when there is no
simple algebraic structure on 3-1).

In the simplest case, if the classifier structure is a discriminant function determined by N
real valued parameters, then the actions of automata are possible values of the parameters
and we employ a cooperating team of N automata involved in a common payoff game.
If we use the traditional (finite action set) learning automata then we have to discretise
the parameter space which may result in loss of precision. However, from the results
obtained on the Iris data (cf. example 5) , it is easy to see that the automata algorithm,
even with discretisation of parameters, performs at a level comparable to other techniques
such as feedforward neural nets in noise-free cases and outperforms such techniques when
noise is present. We have also presented algorithms based on the recent model of
continuous action set learning automata (CALA) where no discretisation of parameters is
needed.

Lenrning automata algoritlinzs for pattern classijicatioiz 289

The interesting feature of the automata models is that the actions of automata can be
interpreted in many different ways leading to rich possibilities for representing classifiers.
In the algorithms presented in $3, the actions of all automata are values of real-valued
parameters. The discriminant functions (functions mapping to R) can be nonlinear
in parameters also (as illustrated in the examples) since the form of the discriminant
function does not affect the algorithm. In $4, another structure of automata are used to
represent unions of convex sets. Here the actions of first level automata are real values
denoting parameters to represent hyperplanes. The actions of second level automata are
Boolean decisions regarding which hyperplanes to pick to make convex sets. Here the
discriminant function is essentially a Boolean expression whose literals are simple linear
inequalities. It is easy to see that a network structure like this will also be useful in learn-
ing decision tree classifiers. Another example of this flexibility is that the same models
discussed in 53 can be used for concept learning where the features may be nonnumeric
and the discriminant function is a logic expression (Sastry et a2 1993, Rajaraman & Sastry
1997.).

All the automata algorithms presented here implement a probabilistic search over the
space of classifiers. All the action probabilities of all the automata together determine a
probability distribution over 7-t. At each iteration, an h E 3-1 is chosen (by each of the
automata choosing an action) which is a random realisation of this probability distribution.
Then the reinforcement obtained is used, in effect, to tune this probability distribution over
7-l. This allows for a type of randomness in the search that helps the algorithms to generally
converge to good parameter values even in presence of local minima. The three-layer
automata network delivers good performance on the Iris data even under 40% classification
noise. The CALA algorithm also achieves good performance (see simulation results in
8 3.4) though theoretically only convergence to local maxima is assured. In the CALA
algoiithm, this is achieved by choosing a higher value of the initial variance for the action
probability distribution which gives an initial randomness to the search process to better
explore the parameter space.

We have also presented algorithms where convergence to global maximum is assured.
The pursuit algorithm allows a team of finite action set automata to converge to the global
maximum of the reward matrix. However, this algorithm has a large memory overhead
to estimate the reward matrix. One can trade such memory overhead for time overhead
using a simulated annealing type algorithm. We presented automata algorithms that use
a biased random walk in updating the action probability distributions (cf. $4.2) and here
the automata team converges to the global maximum witli a large probability. A similar
modification is possible for the CALA algorithm also so that it can converge to the global
maximum.

There are some similarities between the automata approach discussed here and the
approach based on genetic algorithms for optimisation. Like in genetic algorithms, in the
automata approach, we maintain a population of possible parameter values. However this
population is maintained implicitly through the effective action probability distribution of
the system of automata. At each instant we evaluate this population and update it into a new
population. The updating does not involve combining different parameters to make new
ones. However, it may be argued that since we could keep an infinite population such
combining may not be necessary. The second difference here is that the updating of the
population is based on evaluation of a single randomly chosen member of the population
unlike in the genetic algorithms where the updating is based on the evaluation of a large
number of possible parameters. This can be incorporated into the automata framework by

290 P S Sastry and M A L Thathachar

making the automaton choose multiple actions and receive multiple reinforcements before
updating the action probability distributions. For this, we can think of a parallel module of
identical automata interacting with the environment. One can design learning algorithms
for such parallel modules of automata which are €-optimal and which result in a large
increase in the speed of learning (which increases almost linearly with the number of
parallel units). Details of such automata structures can be found in Thathachar & Arvind
(1998). In spite of the above similarities, there are many differences between automata
algorithms and genetic algorithms. The main strength of the automata models is that all the
algorithms discussed in this paper have rigorous convergence proofs. More work is needed
to combine the analytical tractability of the automata algorithms with some of the ideas
from genetic algorithms to design more flexible learning systems with provable conver-
gence properties.

There are other automata models that have been used for pattern classification. In all
the models considered in this paper, the actions of automata are possible values for the
parameters. It is possible to envisage an alternative set-up where the actions of the automata
are the class labels. However, in such a case, we need to allow for the pattern vector to be
somehow input to the automata system. Hence we need to extend the automaton model to
include an additional input which we shall call context. In the traditional model of learning
automata (whether with finite action set or continuous action set), the automaton does not
take any input other than the reinforcement feedback from the environment. Within this
framework we talk of the optimal action of the automaton without reference to any context.
For example, when actions of automata are possible values of parameters, it makes sense to
ask which is the optimal action. However, when actions of automaton are class labels, one
can talk of the optimal action only in the context of a pattern vector that is input. Here with
different context inputs, different actions may be optimal and hence we should view the
objective of the automaton as learning to associate the right action with each context. Such
a problem has been called associative reinforcement learning and automata models with
provision for a context input, called generalised learning automata (GLA), are studied
by many researchers (Barto 1985; Barto & Anandan 1985; Phaimlkar 1991; Williams
1992). In contrast, the traditional automaton may be thought of as a model for non-
associative reinforcement learning. In a GLA, the action probabilities for various actions
would also depend on the current context vector input. Thus, if X is the context input then
the probability of GLA taking action y is given by g (X , W J) , where g (. , . , .) is the action
probability function of the GLA and W is a set of internal parameters. The learning
algorithm updates the parameters W based on the reinforcement and the objective is to
maximise the reinforcement over all context vectors. Due to the provision of the context
input into the GLA, these automata can be connected together to form a network where
outputs of some automata can forrn part of context input to other automata (Phansalkar
1991; Williams 1992). There are learning algorithms for GLA that guarantee conver-
gence to local maxima of the reinforcement function (Phansalkar 1991). These automata
networks can be used for pattern classification very much like the models discussed in this
paper.

We thank G Santharam for his hqlp in preparing the figures for this manuscript. This work
is supported in part by an Indo-US project under ONR grant number N-00014-J-1324.

Learning automata algorithms for pattern classification 29 1

References

Aluffi-Pentini F, Parisi V, Zirilli F 1985 Global optimisation and stochastic differential equations.

Barto A G 1985 Learning by statistical cooperation of self-interested neuron-like computing

Barto A G, Anandan P 1985 Pattern-recognizing stochastic learning automata. ZEEE Trans. Syst.,

Baum E, Haussler D L 1989 What sized net gives valid generalisation. Neural Comput. 1: 151-160
Blurn J R 1954 Multidimensional stochastic approximation methods. Ann. Math. Stat. 25: 737-744
Blumer A, Ehrenfeucht A, Haussler D L, Warmuth M K 1989 Learnability and the Vapnik-

Borkar V S 1998 Stochastic approximation algorithms: Overview and recent trends. Sadhana 24:
Bush R R, Mosteller F 1958 Stochastic modelsfor learning (New York: John Wiley)
Chiang T, Hwang C, Sheu S 1987 Diffusion for global optimisation in Rn. SIAM J. Control Optim.

Duda R 0, Hart P E 1973 Pattern classifcation and scene analysis (New York: Wiley)
Haussler D L 1992 Decision theoretic generalization of the PAC model for neural net and learning

applications. In$ Comput. 100: 78- 150
Kashyap R L, Blaydon C C, Fu K S 1970 Stochastic approximation. Adaptive, learning and pattern

recognition systems: Theory and applications (eds) J M Mendel, K S Fu (New York Academic
Press)

Kiefer J, Wolfowitz J 1952 Stochastic estimation of a regression function. Ann. Math. Stat. 23:
462-466

Kushner H Y and Yin G G 1997 Stochastic approximation algorithms and applications (New York:
Springer-Verlag)

Lippmann R P 1987 An introduction to computing with neural nets. IEEE Acoust., Speech Signal
Process. Mag. April: 4-22

Minsky M L, Papert S A 1969 Perceptrons (Cambridge, MA: MIT Press)
Nagendra G D 1997 PAC learning with noisy samples. M E thesis, Dept. of Electrical Engineering,

Nrtrendra K S, Thathachar M A L 1989 Learning automata: An introduction (Englewood Cliffs, NJ:

Natarajan B K 1991 Machine learning: A theoretical approach (San Mateo, CA: Morgan Kaufmann)
Phansalkar V V 1991 Learning automata algorithms for connectionist suystems - local and global

convergence. Ph D thesis, Dept. of Electrical Engineering, Indian Institute of Science, Bangalore
Rajaraman K, Sastry P S 1996 Finite time analysis of pursuit algorithm for learning automata. IEEE

Trans. Syst., Man Cybern. 27: 590-599
Rajaraman K, Sastry P S 1997 A parallel stochastic algorithm for learning logic expressions under

noise. J. Indian Inst. Sci. 77: 15-45
Rumelhart D E, Hinton G E, Williams R J 1986 Learning internal representations by error propaga-

tion. Parallel distributed processing (eds) D E Rumelhart, J McLlelland (Cambridge, MA: MIT
Press) vol. 1

Santharam G 1994 Distributed learning with connectionist models for optimisation and control. Ph D
thesis, Dept. of Electrical Engineering, Indian Institute of Science, Bangalore

Santharam G, Sastry P S , Thathachar M A L 1994 Continuous action set learning automata for
stochastic optimization. J. Franklin Inst. 33 1 : 607-628

Sastry P S, Rajaram K, Ranjan S R 1993 Learning optimal conjunctive concepts using stochastic
automata. IEEE Trans. Syst., Man Cybern. 23: 1175-1184

Sastry P S , 'Phansalkar V V, Thathachar M A L 1994 Decentralised learning of Nash equilibria in
multi-person stochastic games with incomplete inforrnation. IEEE Trans. Syst., Man Cybern. 24:

J. Optim. Theory Appl. 47: 1-26

elements. COINS Tech. Report. 81-1 1, Univ. of Massachusetts, Amherst, MA

Man Cybern. 15: 360-374

Chervonenkis dimension. J. Assoc. Comput. Mach. 36: 929-965

25: 737-753

Indian Institute of Science, Bangalore

Prentice Hall)

769-777

292 B S Sastry and M A L Thathachar

Shapiro I J, Narendera K S 1969 Use of stochastic automata for parameter self optimisation multi-
model performance criteria. IEEE Truns. Syst. Sci. Cybern. 5: 352-360

Sklansky J, Wassel G N 198 1 Pattern classification and trainable nzachines (New York: Springer-
Verlag)

Thathachar M A L, Sastry P S 1985 A new approach to the design of reinforcement schemes for
learning automata. IEEE Trans. Syst,, Man Cybern. 15: 168-175

Thathachar NI A L, Sastry P S 1987 Learning optimal discriminant functions through a cooperative
game of automata. ZEEE Trans. Syst., Man Cyhern. 17: 73-85

Thathachar M A L, Sastry P S 1991 Learning automata in stochastic games with incomplete
information. Systems and signal processing (eds) R N Madan, N Vishwanathan, R L Kashyap
(New Delhi: Oxford and IBH) pp 417-434

Thathachar M A L, Phansalkar V V 1995a Learning the global maximum with paranieterised
learning automata. IEEE Trans. Neural Networks 6: 398-406

Thathachar M A L, Phansalkar V V 1995b Convergence of teams and hierarchies of learning
automata in connectionist systems. IEEE Trans. Syst., Man Cybern. 25: 1459-1469

Thathachar M A L, Arvind M T 1998 Parallel algoritlims for modules of learning automata. ZEEE
Trans. Syst., Man Cybern. B28: 24-33

Vapnik V N 1982 Estimation of dependences based on empirical data (New Yorlc Springer-Verlag)
Vapnik V N 1997 Nature of statistical learning tlzeoiy (New York: Springer-Verlag)
Williams R J 1992 Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine learning 8: 229-256

