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Abstract. This paper considers the problem of learning optimal discriminant 
functions for pattern classification. The criterion of optirnality is minimising the 
probability of rnisclassification. No knowledge of the statistics of the pattern 
classes is assumed and the given classified sample may be noisy. We present a 
comprehensive review of algorithms based on the model of cooperating systems 
of learning automata for this problem. Both finite action set automata and 
continuous action set automata models are considered. All algorithms presented 
have rigorous convergence proofs. We also present algorithms that converge to 
global optimum. Simulation results are presented to illustrate the effectiveness 
of these techniques based on learning automata. 
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1. Introduction 

In this paper we discuss the problem of learning optimal decision rules for classifying 
patterns. We survey a number of adaptive stochastic algorithms for finding the decision rule 
that minimises the probability of misclassification. All these algorithms are based on the 
learning automata (LA) models (Narendra & Thathachar 1989). The primary motivation 
for this survey is that while LA methods are effective in solving many pattern recognition 
(PR) problems, the variety of automata-based techniques available for learning many rich 
classes of classifiers, are not widely known. Here we present a unified view of LA 
algorithms for pattern classification. 

The LA algorithms that we consider are all essentially optimisation algorithms for 
finding a maximum or a minimum of a regression functional based on noisy function 
measurements. Such an optimisation is an important component of learning both 
in @atistical pattern recognition as well as in computational learning theory and the 
probably approximately correct (PAC) learning of symbolic concepts (see the discussion in 
Haussler 1992). The LA algorithms that we discuss here are useful both in PR (Thathachar 
8z Sastry 1987; Thathachar & Phansalkar 1995b) and in learning concepts in the forrn of 
Boolean expressions (Sastry et aZ1993, Rajaraman & Sastry 1997). To put these algorithms 
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in proper perspective, we briefly review below the 2-class PR problem and the PAC 
learning framework as extended by Haussler (1992). 

We shall be considering the pattern recognition (PR) problem in the statistical frame- 
work. For simplicity of presentation, we shall concentrate only on the 2-class problem. 
However, all these algorithms can be used in multiclass problems also (e.g., see discussion 
in Thathachar & Sastry 1987). 

Consider a 2-class PR problem. Let p(XI1) and p(X12) be the two class conditional 
densities and let p1 and p2 be the prior probabilities. Let the discriminant function, g ( X ) ,  be 
given by g(X) = p(X/l)pl -p(X12)p2. (Here X is the feature vector). Then, it is well 
known (Duda & Hart 1973) that the Bayes decision rule: 

decide X E class - 1, 
decide X E class - 2, 

if g(X) > 0, 
otherwise, 

is optimal in the sense that it minimises the probability of error in classification. 
Often, in a PR problem we do not know the class conditional densities and prior 

probabilities. All that is provided is a set of sample patterns along with their correct 
classification (modulo noise, if present), using which the proper decision rule is to be 
inferred. One approach is to assume that the form of the class conditional densities is 
known. Then the sample patterns can be used for estimating the relevant densities, which, 
in turn, can be used to implement Bayes decision rule (Duda & Hart 1973). This method is 
somewhat restricted by the class of densities that can be handled. Also it is difficult to 
relate the errors in classification to errors in estimation of densities. 

An alternative approach is to assume some parametric form for the discriminant function 
and learn the needed parameters. Let g(X, W) be the discriminant function, where X is the 
feature vector and W is the parameter vector, to be used in a decision rule: 

decide X E class - 1, 
decide X E class - 2, 

if g(X, W) > 0 
otherwise. 

Now the problem is one of determining an optimum value for the parameter vector from 
the sample patterns provided. For this we need to define a criterion function and devise 
algorithms for determining where the criterion function attains optimum values. We are 
interested in the case where the class conditional densities are totally unknown and there 
may be present both pattern noise (in the sense that class conditional densities may be 
overlapping) and classification noise (in the sense that the classification provided for the 
sample patterns may occasionally be incorrect). The objective is to determine a parameter 
vector that results in rninirnising probability of error in classification. 

A popular criterion function for this problem (particularly for neural net algorithms) is 
the squared error over the sample set. Here we define 

(3) 

where S is the set of sample patterns. Y(W,X) denotes the output of the classifier with 
parameter vector W on the pattern X, and t (X>  is the ‘correct’ classification (as given in the 
sample set) for X. 

This is the criterion function used with feedforward neural network models for pattern 
classification. In such a model Y (. , .) is represented by the neural net and W corresponds to 
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the weights in the network. If we choose a discriminant function’ g(W, X) = WTX and 
define Y ( .  , .) by the decision rule given by (2), we get the Perceptron model (Minsky & 
Papert 1969). The Perceptron learning algorithm guarantees to find a W at which the value 
of F ( . )  given by (3) is zero provided such a W exists. In general, we can find a W that 
minimises F ( . )  using gradient descent. However, in such a case, Y ( .  , .) has to be 
differentiable with respect to its first argument. In feedforward neural net models with 
sigmoidal activation function, the error backpropagation algorithm (Rumelhart et al 1986) 
implements gradient descent in a parallel and distributed manner, 

One of the problems with the criterion function F (  .) defined by (3) is that it measures the 
error of a classifier (given by W) only over the sample set. However, we are interested in 
the classification error over the entire population. That is, if W* is a minimiser of F (  .) then 
we want to know how well a classifier with parameters W* performs on a random new 
pattern. This issue of generalisation is a well studied problem in statistics (Vapnik 1982, 
1997). The ‘goodness’ of the learnt classifier W* depends on whether there are ‘sufficient’ 
number of ‘representative’ samples and on the ‘complexity’ of the class of discriminant 
functions chosen. For example, in the case where the discriminant function is to be 
represented by a multilayer perceptron, if the samples are drawn in an independent 
identically distributed (iid) manner, then, using results from computational learning theory 
(Blumer et al 1989), it is possible to put an upper bound on the required number of samples 
to ensure, with a (preset) high probability, that the classification error with W* is no more 
than (say) twice the average error made by W* on the sample set (Baum & Haussler 1989). 
(See Vapnik 1997 for a comprehensive discussion on this issue.) 

In the statistical pattern recognition framework, one can ensure that the criterion function 
properly takes care of the generalisation problem by defining F (  .) by 

F(W) = E[Y(W, X) - t (X ) I2 ,  (4) 
where E denotes expectation with respect to the (unknown) distribution from which the 
patterns are drawn. It should be noted that F ( . )  defined by (4) is not observable. That is, 
given a W we cannot get F(W) because the relevant statistical properties of the pattern 
classes are unknown. Now consider the function, k(W,X) = (Y(W, X) - t ( x ) )2  which is 
observable for all sample patterns. If the sample patterns are drawn in an iid manner then 
we have 

F(W) = EF(W, X). ( 5 )  
From the given sample of patterns (and hence the observations on p) ,  we can find a W 

that minimises F(  .) using, e.g., stochastic approximation algorithms (Kiefer & Wolfowitz 
1952, Blum 1954, Kashyap et al 1970, Kushner & Yin 1997, Borkar 1998). As earlier, we 
need to assume again that Y ( .  , .) is a differentiable function of its first argument. Unlike the 
case of the criterion function defined by (3), here we can also take care of zero-mean 
independent additive noise in the classification (the expectation operation in (5) can include 
averaging with respect to the noise also). 

There is still one important problem with both the criterion functions defined above. The 
parameter vector that minimises F (  .) does not necessarily minimise probability of 
misclassification (Sklansky & Wassel 1981). If we assume that probability of 
misclassification is a more natural criterion for pattern classification problems, then we 

Here WT denotes transpose of vector W 
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should define the criterion function by 

F(W) = Prob[W misclassifies a random pattern]. (6) 

For a two class problem, we can assume both Y and t (defined earlier) to be binary 
valued. Then, if we assume, as before, iid samples and unbiased classification noise, we 
can rewrite (6) by 

F(W) = El{Y(W,X)#t(X)}, (7) 

where IA  is the indicator of event A, and E denotes the expectation. Since the indicator 
function above is observable for all sample patterns, we may think that we can once again 
use simple stochastic approximation algorithms for minimisation. However, here Y (. , .) 
needs to be binary valued and would not be differentiable. There are schemes based on 
stochastic approximation algorithms for tackling this problem (Sklansky & Wassel 198 1) 
though these techniques are rather cumbersome and are computationally intensive. 

In finding a W that minimises F ( . )  given by (7), one uses an iterative algorithm that 
updates W, to Wlz+l using the ‘noisy’ value of F ( . ) ,  namely, l{y(w,l,xn)#t(x,,)}, where X, is 
the nth sample pattern and W, is the parameter vector at iteration n. Such algorithms (e.g., 
stochastic approximation algorithms or the LA algorithms discussed in this paper) converge 
asymptotically to a minimiser of F( . )  given by (7). Such a procedure presupposes an 
infinite sequence of iid samples. Since in practice one has only a finite set of samples, what 
can we say about the result of such algorithms if ,the same set of samples are used 
repeatedly till convergence? This question, widely studied in computational learning 
theory, brings to focus the distinction between the statistical part and the optimisation part 
inherent in any learning problem. We briefly discuss below a framework due to Haussler 
(1992) that clarifies this issue. 

Let X be the feature space and let y = {0,1} be the output space of our classifier. Let 
s = {(Xi, yi), 1 L: i 5 rn, Xi E X, yi E y }  be a finite set of labelled samples drawn in an iid 
manner with respect to some distribution P on X x y. (Note that since P is arbitrary, noise 
is automatically taken care of). Every classifier or decision rule is a function from X to Y 
(e.g., Y(W,.) above). Let ?-I be the set of classifiers of interest. Define a functional on 3-t by 

F ( h )  = E e ( W , Y ) ,  h E 3.1, (8) 

where E denotes expectation with respect to P and t(. , .) is called the loss function. On a 
sample (X, y ) ,  where X is the feature vector and y is the classification, L(h(X), y )  gives the 
loss suffered by the classifier h. The loss function is assumed to be known to the learner. If 
we consider a loss fimction given by: l ( x , y )  = 0 when x = y and L(x, y) = 1 when x # y ,  
F ( . )  given by (8) is same as that given by (7) and it will be the probability of 
misclassification with classifier h. Let 

h* = arg min F(h)  , 
hE7-I 

which is the optimal classifier. 
Define another functional on 3.1, F ,  by 

F(h)  = Et(h(X) ,  y )  

(9) 
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where E denotes expectation with respect to the empirical distribution defined by the 
sample set S = { ( X j , y i ) ,  I L: i 5 m}. Let 

Suppose it is true that F(h)  converges to F(h) uniformly over 7-1. This depends on the 
nature of 7-l and thus on the structure chosen for the classifier. However, given such a 
uniform convergence, a close enough approximator to from a sufficiently large sample set 
will also be a close approximator to h*. (See lemma 3.1 in Haussler (1992) and the 
discussion therein.) Now we can think of the problem of learning, to a good approximation, 
the optimal classifier h* from a finite sample set as having two parts. One is the statistical 
problem of establishing the uniform convergence as above and calculating the number of 
samples needed for a given degree of approximation. The second one is an optimisation 
problem of finding a good approximator to given a finite set of samples. The 
computational learning theory literature has concentrated mostly on the statistical part of 
the problem and many results are available regarding the number of samples needed for 
learning a good approximation to h* for various kinds of 7-t (Vapnik 1982; Natarajan 1991; 
Haussler 1992; Vapnik 1997). In this paper we concentrate on the second problem, namely, 
finding a good approximation to given a finite set of samples, for many rich classes 3-1. 

We will be discussing learning automata algorithms for minimising F (  .) defined by (6) or 
equivalently by (8). LA methods considered here are all essentially regression function 
learning algorithms. That is, based on observations of l ( h ( X j ) , y i )  from a sequence { (X i , y j ) }  
of iid samples, the algorithm finds the minimiser of F ( - )  defined by (8). Hence, given a 
finite set of sample patterns, S, if samples are presented to the algorithm by uniformly 
drawing from S, then, the algorithm will (asymptotically) find a minimiser of defined by 
(10). If F(h) converges to F(h) uniformly over 3-1, then as discussed above, the algorithm 
will find a good approximator to the optimal classifier defined by (9). The structure of 
classifiers we consider are such that the needed uniform convergence holds. Hence, even 
though we present the algorithms as if we have an infinite sequence of iid samples, in this 
sense, the algorithm learns well from a sufficiently large finite sample. However, we do not 
give any sample complexity results for various families of classifiers here because these are 
easily calculated, e.g., from the results of Haussler (1992) and Vapnik (1997). 

We can broadly distinguish between two types of algorithms for optimisation employed 
in pattern recognition: deterministic and stochastic. The simplest and most often used 
algorithm is the gradient descent procedure. Here one searches in the parameter space by 
the following iterative procedure 

W(k+ 1) = W(k) - qVF(W(k)), 

where q is the stepsize. For example, in feedforward neural network models, error 
backpropagation implements gradient descent in a distributed fashion. The dynamics of 
such a procedure traces out a path in the parameter space which generally converges to 
local minima. If there is noise in the sample set provided, then the calculated gradient 
direction may be erroneous and one cannot, in general, say how the algorithm behaves. 

In stochastic algorithms, the next point in the parameter space is picked randomly (based 
on the current point and the value of the criterion function). For example, with the criterion 
function defined by (5), after each sample, we can employ the Robbins-Munro algorithm: 
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where the stepsize q k  satisfies r)k 2 0, rj$ < Qo (Kushner & Yin 1997; 
Borkar 1998). This can be implemented if Y ( .  , .) is differentiable and an explicit 
expression for the above gradient is available. Otherwise we can approximate the gradient 
by finite difference and use, e.g., the Kiefer-Wolfowitz procedure (Kiefer & Wolfowitz 
1952). The procedure converges to a local minimum under some conditions on the noise 
etc. In these algorithms also, the search is in the parameter space though the choice of next 
point is random because it depends on the randomly drawn next pattern (also, there may be 
noise in the classification of X ( k ) ) .  

An alternative approach for stochastic search is provided by the learning automata 
models. These algorithms maintain, at each instant k ,  a probability distribution, say, p(k) 
over the parameter space. The parameter vector at instant k ,  W(k) ,  is a random realisation 
of this distribution. The (noisy) value of the criterion function at this parameter value is 
then obtained and is used to update p(k) into p(k + 1) by employing a learning algorithm. 
The objective of the learning algorithm is to make the process converge to a distribution 
that chooses the optimal parameter vector with arbitrarily high probability. Thus, here the 
search is over the space of probability distributions. The random choice of W(k)  from p(k) 
can allow for sufficient exploration of the parameter space. Unlike stochastic approxima- 
tion based techniques (or other gradient descent methods), here we do not need to explicitly 
estimate any gradient information and hence these algorithms are numerically more stable. 
In the rest of this paper we present a few such learning algorithms for pattern classification 
using learning automata. 

r]k = 00 and 

2. Learning automata 

In this section we briefly explain learning automata (LA) models. The reader is referred to 
Narendra & Thathachar (1989) for more details. 

A learning automaton is an adaptive decision making device that learns the optimal 
action out of a set of actions through repeated interactions with a random environment. 
Based on the cardinality of the action set, two kinds of learning automata are distinguished: 
finite action set learning automata (FALA) and continuous action set learning automata 
(CALA). 

I 

2.1 Finite action set learning automata 

In a FALA the number of actions available is finite. Let A = {al ,  . .'. , a'}, r < 00, be 
the set of actions available. The automaton maintains a probability distribution over 
the action set. At each instant, k ,  the automaton chooses an action cq E A,  at random, 
based on its current action probability distribution, p(k) E R', k = 0,1, .  . . . Thus, 
p(k) = [ p l ( k ) .  - .pr(k)IT E R', with p i (k )  = Prob[a(k) = q], Yk.  The action chosen by 
the automaton is the input to the environment which responds with a reactipn, P ( k ) .  
This reaction is stochastic and is also called the reinforcement. We have P(k) E R C_ 
[O, 13, 'dk> where R is the set of possible reactions from the environment. If R = (0 ,  1) 
then the environment is called P-model; if R = [0,1] then it is called S-model; and 
if R = [PI,. . . , ,@} then it is called Q-model. In all cases, higher values of the 
reinforcement signal are assumed more desirable. Let ,Ti be the distribution from 
which P(k)  is drawn when a ( k )  = ai, 1 5 i 5 I*. Let di denote the expected value of 
P ( k )  given a ( k )  = ~i (i.e., the expected value of ,Ti). Then di is called the reward 



Learning automata algorithms for pattern classification 267 

probability2 associated with action Qi, 1 5 i 5 r. Define the index nz by 

dm = maxi(di}. 

Then the action am is called the optimal action. 
In the above discussion, we have implicitly assumed that the distributions ,Ti and hence 

di, 1 5 i 5 r, are not time varying and thus the identity of the optimal action is also not 
time varying. In this case the environment is said to be stationary. If the distribution of the 
random reaction from the environment for a given choice of action is time varying then the 
environment is said to be nonstationary. In this section we consider only stationary 
environments. In the next two sections where LA systems are used for pattern classification 
we will be considering some nonstationary environments. 

The learning automaton has no knowledge of the distributions ,Ti or of the reward 
probabilities. The objective for the automaton is to identify the optimal action; that is, to 
evolve to a state where the optimal action is chosen with probability arbitrarily close to 
unity. This is to be achieved through a learning algorithm that updates, at each instant k ,  the 
action probability distribution p(k) into p(k + 1) using the most recent interaction with the 
environment, namely, the pair (a(k) ,  ,B(k)). Thus if T represents the learning algorithm, 
then, p(k + 1) = T(p(k), a(k) ,  P ( k ) ) .  The main problem of interest here is the design of 
learning algorithms with satisfactory asymptotic behaviour. We are interested in algorithms 
that make p m ( k )  converge to a value close to unity in some sense. 

DEHNITION 1 
A learning algorithm is said to be .+optimal if given any c > 0, we can choose parameters 
of the learning algorithm such that with probability greater than 1 - E ,  

liminfpm(k)> 1 - E .  
k+oo 

We will be discussing €-optimal learning algorithms here. We can characterise 6-optimality 
in an alternative way that captures the connection between learning and optimisation. 
Define average reward at k ,  G(k) ,  by 

G(k) = E[P(k)lP(k)l 

DEFINITION 2 
A learning algorithm is said to be €-optimal if, given any E > 0, it is possible to choose 
parameters of the algorithm so that 

lim inf EG( k )  > d,7z - c. 
k - w  

It is easily seen that the two definitions are equivalent. Thus, the objective of the learning 
scheme is to maximise the expected value of the reinforcement received from the 
environment. In the remaining part of this section we present three specific learning algo- 
rithms which are used later on. 

This name has its origin in P-model environments where di is the probability of getting a reward (Lee, ,8 = 1) 
with action ai. 
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2. la Linear reward inaction (LR-I) algorithm: This is one of the most popular algorithms 
used with LA models. This was originally described in mathematical psychology literature 
(Bush & Mosteller 195 8) but was later independently rediscovered and introduced with 
proper emphasis by Shapiro & Narendra (1969). 

Let the automaton choose action ai at time k. Then p(k) is updated as: 

where 0 < X < 1 is the stepsize parameter and ei is a unit probability vector with ith 
component unity and all others zero. To get an intuitive understanding of the algorithm, 
consider a P-model environment. When P(k)  = 1, (i.e., a reward from the environment), we 
move p(k) a little towards ei when oli is the chosen action, thus incrementing the probability 
of choosing that action and decrementing all others. When P ( k )  = 0, (i.e., a penalty from the 
environment), the probabilities are left unchanged. Hence the name of t.he algorithm. 

L R - ~  is known to be €-optimal in all stationary random environments (Narendra & 
Thathachar 1989). That is, given any E > 0, we can choose a A* > 0 such that for all 
X 5 A", with a large probability, asymptotically pm(k )  will be greater than 1 - E .  LR-I is 
very simple to implement and it results in decentralised learning in systems consisting of 
many automata (Sastry et a2 1994). However, in such cases it can find only local minima 
(see the next section) and it may converge rather slowly. 

2.lb Pursuit algorithm: This belongs to the class of estimator algorithms (Thathachar & 
Sastry 1985, Rajaraman & Sastry 1996) that were originally proposed to improve the speed 
of convergence. This algorithm typically converges about 10 to 50 times faster than LR-I. 

This improvement' in speed is bought at the expense of additional computation and 
memory requirements. Here, the automaton maintains, in addition to the action probabi- 
lities, twomorevectors,Z(k)=[Zl(k), . . . ,Z,(k)lTandB(k)=[B1(k), . . . ,B,(k)]T.Zj(k) and 
Bi(k)  represent respectively, the number of times action cq is chosen till k and the total 
amount of reinforcement obtained with ai till k ,  1 5 i 5 r. Then, a natural estimate of the 
reward probability of ith action, di, is i j ( k )  = Bi(k) /Zi(k) ,  which is used in the algorithm to 
update the action probabilities. The algorithm also needs to update the vectors Z ( k )  and 
B(k) and it is specified below. 

Let a(k) = aj and let P ( k )  be the reinforcement at k. Then, 

&(k)  = Bi(k - 1) 3- P ( k ) ,  
Zi(k) = Zi(k - 1) + 1, 

Bj(k) = Bj(k - I),  'v'' # i ,  
Zj(k)  = Zj(k  - l), 'dj # i, 

Let the random index H be defined by 

Then, 



Learning automata algorithms for pattern classification 269 

where X(0 < A < 1) is the stepsize parameter and e H  is the unit probability vector with Hth 
component unity and all others zero. By the definition of the random index H ,  QH is the 
current estimated best action and (18) biases p(k + 1) more in favour of that action. Since 
the index H keeps changing as the estimation proceeds, the algorithm keeps pursuing the 
current estimated best action. A special feature of the algorithm is that the actual 
reinforcement, P ( k )  does not appear in the updating of p(k). Hence P(k)  can take values in 
any bounded set unlike the case of LR-I where P ( k )  has to be in [0,1] to ensure that 
p ( k +  1) is a probability vector (see (15)). The pursuit algorithm and the other estimator 
algorithms are c-optimal in all stationary environments. 

I 

2.2 Continuous action set learning automata 

so far we have considered the LA model where the set of actions is finite. Here we consider 
LA whose action set is the entire real line. To motivate the model, consider the problem of 
finding the maximum of a function f : R 3 R, given that we have access only to noisy 

- function values at any chosen point. We can think off as the probability of rnisclassification 
with a single parameter discriminant function. To use the LA model for this problem, we can 
discretise the domain off into finitely many intervals and take one point from each interval 
to form the action set of the automaton (Thathachar & Sastry 1987) (see fj 3 below). We can 
supply the noisy function value (normalised if necessary) as the reinforcement. This can 
solve the optimisation problem but only at a level of resolution which may be poor, based on 
the coarseness of the discretisation. Also, if we employ too fine a level of discretisation, the 
resulting LA will have too many actions and the convergence rate will be poor. 

A more satisfying solution would be to employ an LA model where the action set can be 
continuous. Such a model, called continuous action-set learning automaton (CALA) will be 
discussed in this subsection. 

The action set of CALA is the real line. The action probability distribution at k is 
N(,u(k) ,  ~ ( k ) ) ,  the normal distribution with mean p ( k )  and standard deviation a(k). At each 

- instant, the CALA updates its action probability distribution (based on its interaction with 
the environment) by updating p ( k )  and a&), which is analogous to updating the action 
probabilities by the traditional LA. As before, let a(k) E R be the action chosen at k and let 
P ( k )  be the reinforcement at k .  Here, instead of reward probabilities for various actions, we 
now have a reward function, f : R + R, defined by 

We shall denote the reinforcement in response to action x as ,Bx and thus 

The objective for CALA is to learn the value of x at whichf attains a maximum. That is, we 
want the action probability distribution, N ( p ( k ) ,  a@)) to converge to N(x, ,  0) where xo is a 
maximum off. However, we do not let a(k) converge to zero to ensure that the algorithm 
does not get stuck at a nonoptimal point. So, we use another parameter, ae > 0, and keep 
the objective of learning as a(k) converging to at and p ( k )  converging to a maximum off. 
By choosing ot sufficiently small, asymptotically CALA will choose actions sufficiently 
close to the maximum with probability sufficiently close to unity. 

The learning algorithm for CALA is described below. Since the updating given for a(k) 
does not automatically guarantee that ~ ( k )  > 01, we always use a projected version of 

~ 
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, 
a(k),  denoted by @(a(k)),  while choosing actions. Also, CALA interacts with the 
environment through choice of two actions at each instant. 

At each instant k ,  CALA chooses an x ( k )  E R at random from its current distribution 
N ( p ( k ) ,  $(a(k)) )  where 4 is the function specified below. Then it gets the reinforcement 
from the environment for the two actions: p ( k )  and x ( k ) .  Let these reinforcements be ,8, 
and ,Ox. Then the distribution is updated as follows: 

=-; 

where 

and 

e X is the step size parameter for learning (0 < X < l), 
e C is a large positive constant, and 
e 04 is the lower bound on standard deviation as explained earlier. 

As explained at the beginning of this subsection, this CALA can be used as an 
optimisation technique without discretising the parameter space. It is similar to stochastic 
approximation algoiithms (Kushner & Yin 1997; Borkar 1998) though here the randomness 
in choosing the next parameter value makes the algorithm explore better search directions. 
For this algorithm it is proved that with arbitrarily large probability, p ( k )  will converge 
close to a maximum off(.) and #(a(k)) will converge close to al, if we choose X and at 
sufficiently small (Santharam 1994; Santharam et al 1994). 

3. A common payoff game of automata for pattern classification 

In this section and the next we will present models using several learning automata for 
pattern classification. All the algorithms presented here are proved to converge (in some 
suitable sense) to the optimal solution. To keep the presentation simple, we will not state 
any of the convergence results in a precise form nor present any proofs. However, we will 

Recall from 3 1 that we pose the pattern classification problem as follows. Let g(X, W) 
with X the feature vector and W the parameter vector, be the discriminant function. We 
classify a pattern using the classification rule given by (2). The form of g(.  , .) is assumed 
known (chosen by the designer). The optimal value for the parameter vector is to be 
deterrnined by making use of a set of (possibly noisy) iid samples from the pattern classes 
which are preclassified. We are interested in learning W that maximises 

' 

provide references for each algorithm where the convergence results are proved. 1 
' 

p(W) = Prob[g(., W) correctly classifies a random pattern]. (21) 

F is defined over R" if there are n parameters and we are interested in finding W that 
globally maxirnises 8'. Define 
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Y(X,W) = 1, if g(x ,W)  > 0,  
= 0, otherwise. 

For a sample pattern X, define 

t ( X )  = 1, if label on X is as Class-1, 

(23) = 0, otherwise. 

Now consider the function F ( - )  defined by 

FtW) = E I { t ( X ) = Y ( X , W ) ) ,  

where E denotes the expectation with respect to distribution of patterns. Since the samples 
are iid, this F will be same as if t ( X )  defined above is the true class of X. When there is 
noise, the F defined above takes care of any pattern noise that is due to the overlapping of 
class conditional densities3. However, if there are random mistakes in the classification of 
training samples, then the F ( - )  defined above will only give the probability that the 
classification of a random pattern by the system agrees with that of the teacher. But we 
want to actually maximise the probability of correct classification. As defined earlier, let 
F(W) be the probability of correct classification with parameters W and let p be the 
probability of correct classification by the teacher (which is assumed to be independent of 
the class to which the pattern belongs). Then, 

Thus, as long as p > 0.5, F(W) and F(W) have the same maxima and hence it is 
sufficient to maximise F.  

In the above we have assumed a uniform classification noise. That is, the probability of 
the teacher correctly classifying a pattern is same for all patterns. Some of the automata 

~ algorithms discussed here can also handle the more general case where the probability of 
teacher correctly classifying X is p ( X )  as long as p(X)> 0.5, W, for certain classes of 
discriminant functions (Nagendra 1997). 

3. I Common payof game of LA 

As briefly outlined in fj 2.3, a single automaton is sufficient for learning the optimal value 
of one parameter. But for multidimensional optimisation problems we need a system 
consisting of as many automata as there are parameters. Here we consider the case where 
these automata are involved in a cooperative game. 

Let A1 , . . . ,AN be the automata involved in an N-player game. In the teminology of 
Game Theory, the choices or pure strategies of each player correspond to the set of actions 

current mixed strategy adopted by the corresponding player. Each play of the game consists 
of each of the automata players choosing an action and then getting the payofs 

of each automaton. The action probability distribution of an automaton represents the 

It may be noted that this is the case in most real pattern classification problems. The sample patterns are 
obtained from the respective physical processes that are sought to be distinguished rather than be drawn at 
random from the feature space and classified by an ‘optimal’ decision rule. 
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(reinforcement) from the environment for this choice of actions by the team. The game we 
consider is a common payoff game and hence all players get the same payoff. Let 
p1 ( k ) )  . . . ) p,(k) be the action probability distributions of the N automata. Then, at each 
instant k,  each of the automata, Ai, chooses an action, aii(k),  independently and at random 
according to pi(k), 1 5 i 5 N .  This set of N actions is input to the environment which 
responds with a random payoff, P ( k )  which is supplied as the common reinforcement to all 
automata. The objective for the team is to maximise the payoff. Define 

d(x1,. . . ,XN) = E[P(k)ld((k)  =xi, 1 5 i 5 N ] .  (26) 

If A1, . , . , A N  have all finite action sets then we call d(x1) . . . , x ~ )  the reward probability for 
that choice of actions, In this case, we can represent the reward probabilities as a hyper- 
matrix D = [djl...jN] of dimension rl x - + . x r N ,  where 

djl...jN = E[P(k)lai'(k) = a;,, 1 5 i 5 N ] .  (27) 

Here {a: ) . . . , a!,} is the set of actions of automaton, Aj, 1 5 i 5 N .  D is called the reward 
probability matrix of the game and it is unknown to the automata. The automata are to 
evolve to the optimal set of actions through multiple interactions with the environment (ie., 
repeated plays of the game) and updating of their action probability vectors using a 
learning algorithm. For this case of a game of finite action set automata, the action a& is 
the optimal action of automaton Ai, 1 5 i 5 N ,  if 

where the maximum is over all possible values of the indices. It may be noted here that for 
any single automaton in the team, the environment is nonstationary. This is because the 
reinforcement to any automaton depends also on the choice of actions by the other 
automata. 

In a similar manner, we can consider a common payoff game played by CALA also. 
Then the action set of each automaton is the real line, d(., . . . , .) is a function from RN to 
R, and we are considering a maximisation problem over N-dimensional real Euclidean 
space. The objective for the automata team again is to find a maximum of d using a 
learning algorithm. It may be noted again that the automata have no knowledge of the 
function d and all they get from the environment is the common reinforcement, ,8 (whose 
expected value for a given choice of actions equals the value of function d at the 
corresponding parameter values). 

3.2 Pattern classijication with finite action set LA 

We need to learn the optimal value of the parameter vector, W = [wl) . . . ) W N ]  E RN. Let 
Wi E V' c R. In any specific problem, knowledge of the parametric form chosen for the 
discriminant function and knowledge of the region in the feature space where the classes 
cluster, is to be utilised for deciding on the sets Vi.  Partition each of the sets Vi into finitely 
many intervals 9, 1 I j  5 rj. Choose one point, vj, from each interval $, 1 < j  5 ri, 
1 5 i 5 N .  For learning the N parameters we will employ a team of N automata, 
A l )  . . . >AN.  The action set of ith automaton is { vi, . , . ) vii}. Thus the actions of ith 
automaton are the possible values for the ith parameter, which are finitely many due to the 
process of discretisation. 
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NOW consider the following common payoff game played by these N automata, At each 
instant k, each automaton Ai chooses an action ai((k) independently and at random 
according to its action probabilities, pi@). Since actions of automata are possible values for 
parameters, this results in the choice of a specific parameter vector, say W ( k )  by the 
automata team. The environment classifies the next sample pattern using this parameter 
vector, and the correctness or otherwise of this classification is supplied to tlie team as the 
common reinforcement, p( k )  . Specifically, 

where X(k) is the sample pattern at k and Y and t are as defined by (22) and (23).  
It is easy to see from (24) and (29) that the expected value of the common payoff to the 

team at k is equal to F(W(k)) where W(k) is the parameter vector chosen by the t e rn  at k. 
Now it follows from (25), (26)-(29) that the optimal set of actions for the team 
(corresponding to the maximum element in the reward matrix) is the optimal parameter 
vector that maximises the probability of correct classification. Now what we need is a 
learning algorithm for the team which will make each automaton in the team converge to 
its optimal action. We will see below that each of the algorithms for a single automaton 
specified in 8 2 can easily be adapted to the team problem. 

Before proceeding further, it should be noted that this method (in the best case) would only 
converge to the classifier that is optimal from among thefinitely many classifiers in the set n:, Vi. This can only be an approximation to the optimal classifier due to the inherent loss 
of resolution in the process of discretisation. While this approximation can be improved by 
finer discretisation, it can result in a large iiumber of actions for each automaton and 
consequently, slow rate of convergence. One can also improve the precision in the learnt 
classifier by progressively finer discretisation. That is, we can first learn a rough interval for 
the parameter and then can choose the Vi set as this interval and further subdivide it and so 
on. However, the method is most effective in practice mainly in two cases: when there is 

- sufficient knowledge available regarding the unknown parameters so as to make the sets V1 
small enough intervals or when it is sufficient to learn the parameter values to a small degree 
of precision. Since we impose no restrictions on the form of the discriminant function g(. , .), 
we may be able to choose the discriminant function so as to have some knowledge of the sets 
V1. (This is illustrated through an example later on.) In $3.3 we will employ a team of CALA 
for solving this problem where no discretisation of parameter ranges would be necessary. 

3.2a LR-I algorithm for the team: The linear reward inaction algorithm presented in § 2.1 
is directly applicable to the automata team. Each automaton in the team uses the 
reinforcement that is supplied to it to update its action probabilities using (15). This will be 
a decentralised learning technique for the team. No automaton needs to know the actions 
selected by other automata or their action probabilities. In fact each automaton is not even 
aware that it is part of a team because it is updating its action probabilities as if it were 
interacting alone with the environment. However, since the reinforcement supplied by the 
environment depends also on the actions selected by others, each automaton experiences a 
nonstationary environment. 

In a common payoff game, if each automaton uses an LR-I algorithm with sufficiently 
small step size, then the team converges with arbitrarily high probability to a set of actions 
that is a mode of the reward matrix. The concept of a mode is defined below. 
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DEFINITION 3 
The choice of actions, aji, 1 5 i 5 N ,  is called a mode of the reward matrix if the following 
inequalities hold simultaneously. 

, 
dj l . . . j N  2 max{dfj 2 . . . j N } ,  

t 

where the maximum is over all possible values for the index, t. 
The mode is a Nash equilibrium in the common payoff game. In our case, from the point 

of view of optirnisation, it amounts to a local maximum. If the reward matrix of the game is 
unimodal then the automata team using the LR-I algorithm will converge to the optimal 
classifier. For example, if the class conditional densities are normal and if the discriminant 
function is linear, then the g m e  matrix would be unimodal. Another example where the 
automata team with LR-I algorithm is similarly effective is that of learning simple conjunc- 
tive concepts (Sastry et a1 1993; Rajaraman & Sastry 1997). However, in general, with this 
algorithm the team can converge only to a local maximum of F ( . )  defined by (24) (Sastry 
et al 1994) and, depending on the specific application, it may or may not be acceptable. 

3.2b Pursuit algorithm for the team: We can adopt the pursuit algorithm presented in 
$2.2 for the automata team problem. However, if each automaton simply uses its 
reinforcement to estimate its effective reward probabilities, the algorithm will not work 
because each automaton experiences a nonstationary environment. We need to keep an 
estimated reward probability matrix from which each automaton can derive a quantity 
which is analogous to the di used in the pursuit algorithm in 5 2.2. The complete algorithm 
is given below. We use hypermatrices B and 2 for updating the estimated reward 
probability matrix. The vector ,!.? here serves for automaton Ai the same purpose as the 
vector d^ €or the algorithm in $2.2. 

Let a'@), the action chosen by the ith automaton at k ,  be aji, 1 5 i 5 N ,  and let P ( k )  be 
the reinforcement. Then 

For 1 5 i 5 N ,  update the vectors Ei by 

Let the random indices H ( i ) ,  1 5 i 5 N be defined by 
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Then, the action probabilities are updated as: 

pi(k + 1) = p j ( k )  + X(eH(i) - ~i(k))> 1 L i L N, (33) 

where X is the step size parameter and eH( i )  is the unit probability vector with H(i)th 
component unity and all others zero. 

It is proved by Thathachar & Sastry (1987, 1991) that the automata team employing this 
algorithm converges to the optimal set of actions even if the game matrix is not unimodal. 
Thus the automata team with pursuit algorithm learns the globally optimal classifier. 

As is easy to see, this algorithm is not decentralised unlike the case with the LR-] 
algorithm. To maintain the estimated reward probability matrix, we need to know the 
actions chosen by all the automata at that instant. The algorithm is computationally not 
very intensive. Only one element of the estimated reward probability matrix changes at 
each instant and hence one can make obvious computational simplifications while updating 
the vectors E .  However, as the dimensionality of the problem increases, the memory 
overhead becomes severe due to the need to store the estimated reward probability matrix. 
However, this algorithm will make the team converge to the maximum element in the 
reward probability matrix in any general game with common payoff and thus ensure 
convergence to the global maximiser of probability of collect classification. 

i? 
r' 

3.3 Pattern class@cation with CAM 

As earlier, we use a team o€ N learning automata, A l ,  . . . ,AN, for learning an N -  
dimensional parameter vector. The actions of the automata will be possible values for the 
parameters. We use N continuous action-set learning automata to lean the N components 
of the pararneter vector. Since the action set of a CALA is the real line, we need not 
discretise the parameter space. Each automaton will be using a normal distribution for the 
action probability distribution as described in 5 2.3. The N automata will independently 
choose actions which results in the choice of a parameter vector by the team. As in the 
previous section, we classify the next pattern with the chosen discriminant function and 
supply a 0/1 reinforcement to the team, depending on whether the classification agrees with 
that of the teacher or not. Each of the automata uses the algorithm described in 52.3 to 
update the action probability distribution. This is once again a completely decentralised 
learning scheme for the team. For the algorithm described by (19) in Fj 2.3, at each instant 
the automaton needs to interact with the environment twice. The same situation holds for 
the team also and thus we classify each pattern with two different parameter vectors to 
supply the two reinforcement signals needed. 

It is proved that the team will converge (with arbitrarily large probability) to a parameter 
vector value that is arbitrarily close to a local maximum of the function F ( - )  defined by 
(24) (Santharam 1994). 

3.4 Simulations 
k-4 

In this section we present results obtained with the automata team models presented earlier 
on some pattern classification problems. We present results with the pursuit algorithm and 
with CALA. For the pursuit algorithm, we need to discretise the parameters and the 
algorithm finds the global maximum. In the case of CALA, convergence to only local 
maxima is assured but we need not discretise the parameters. As will be seen below, by 
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proper choice of initial variance in the CALA algorithm we can obtain very good 
performance. 

We present three problems and all three have 2-dimensional feature vectors. In the first 
two, the discriminant function is linear while in the third problem we use a quadratic 
discriminant function. In all problems the prior probabilities of the two classes are equal. 
Let p(Xlwi) ,  i = 1 , 2  denote the two class conditional densities. 

Example 1. p(X(w1) has a uniform distribution over the compact set [2,4] x [2,4] and 
p(Xlw2) has a uniform distribution over the compact set [3.5,5.5] x [3.5,5.5]. 

Example 2. The class conditional densities for the two classes are given by Gaussian 
distributions: 

m2 = [3.0,3.0IT, 

For these two problems we use the same discriminant function whose general form is 
given by 

g(X, W) = 1 - X l / W  - x 2 / w 2  

where the parameters w1 and w2 are unknown. We choose this form for the linear 
discriminant function to illustrate the fact that we can handle discriminant functions that 
are nonlinear in its parameters. 

In example 1 with uniform densities, the weight values for the optimal linear discriminant 
function are w1 = 7.5 and w 2  = 7.5. The theoretically computed value of the minimum 
probability o f  misclassification that can be achieved, with the optimal discriminant 
function, in the example is equal to 0.06. 

In example 2 with Gaussian densities, the weight values for the optimal linear discri- 
minant function are w1 = 5.0 and w2 = 5.0, for which the minimum probability of 
misclassification is equal to 0.16. The form of the discriminant function and the contours of 
the class conditional densities for these two problems are provided in figures 1 and 2. 

Example 3. The class conditional densities for the two classes are given by Gaussian 
distributions: 

P ( X l W 1 )  = “m1, El), 
where ml = [2.0, 2.0IT, 

1.0 -0.25 
-0.25 1.0 E l =  [ 
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Figure 1. Class conditional densities and the form of the optimal discriminant 
function in example 1. 

For this problem, a quadratic discriminant function is considered. The form of the 
discriminant function is 

Figure 2. Class conditional densities and the form of the optimal discriminant 
function in example 2. 
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XZ 

Figure 3. This figure shows the form of the discriminant function used in example 3. 
It is a parabola specified by three parameters m,xo and a. 

where W = (m,xo, a )  is the parameter vector. This is a parabola described by three 
parameters m, xo and a. A sketch of this parabola is shown in figure 3. This form of the 
equation chosen for the parabola makes it easier to visualize the parabola in terms of the 
three parameters. As mentioned earlier, in our method we can choose any form for the 
discriminant function. With the specific form chosen, it is easier to guess the ranges of the 
parameters based on some knowledge of where in the feature space the two classes cluster. 
It would be considerably more difficult to guess the parameter ranges if we had chosen a 
general quadratic expression for our discriminant function. Once again it may be noted that 
the discriminant function is nonlinear in its parameters. 

The parameters of the optimal discriminant function for the above pattern recognition 
problem (example 3) are: 

m = 1.0 xo = 3.0 a = 10.0. 

A sketch of the optimal discriminant function is shown in figure 4. 

3.4a Learning automata team with pursuit algorithm: For all the three problems, 300 
samples of each class are generated. At each instant, one of the patterns from this set is 
selected at random and given to the learning system. The learning parameter, A, is set at 0.1 

In the first two examples, we used a team of two automata, one for each parameter. The 
range of the parameters was chosen to be [0, 101 which was discretised into five intervals. 
Thus each automaton had five actions. 

In example 1, 10 experiments were tried. In seven out of 10 runs, the team converged to 
the optimal actions. The average number of iterations needed for the probability of the 
optimal action in each automaton to be greater than 0.99 was 830, averaged over the seven 
runs. In the other three runs, the team converged to a nearby line. 

In example 2, the team converged to the optimal actions in eight out of ten experiments 
and the average number of iterations for convergence was 930. In the other two runs, the 
team converged to a good suboptimal solution. 

In example 3, a team of three automata was used. The ranges for the parameters, m, xo 
and a were taken to be [ O S ,  1.51, [2, 61 and [l, 101 respectively. The range of each 
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x, 
Figure 4. Class conditional densities and the form of the optimal di riminant 
function in example 3. The discriminant function used in this example is a parabola with 
3 unknown parameters. 
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parameter was discretised into five levels. In seven out of 10 experiments, the team 
converged to the optimal parameters. In the other three runs, only one of the three automata 
converged to a wrong action. The average number of iterations needed for convergence was 
1970. 

3.4b CALA team: For the first two problems we use a team of two continuous action set 
automata, one for each parameter w1 and w2. For each problem, 300 samples of each class 
are generated from which a pattern is selected at random for every iteration during training. 
We also generated 50 sample patterns from each class for testing the optimality of the 
learned parameters. The results of the simulations for these two problems are presented in 
tables 1 and 2. We have chosen 01 = 0.3 for both problems, and step size q = 0.005 for 
example 1 and 7 = 0.01 for example 2. In all the simulations, the value of the variance 
parameter CT in each CALA converged to some value such that $(c) was close to q. In table 
1 the number of iterations corresponds to the first instant (that is a multiple of 100) after 
which the number of classification errors for example 1 on the test set is less than 7 (out of 

Table 1. Results obtained using CALA team with example 1. 

Initial values Final value 

P i  .:, CT: % Error # Iterations % Error Pt) 

5 5 9 9 44 1600 6 
5 5 11 11 44 2200 6 
5 8 8 8 28 1900 6 
5 8 12 12 28 1300 6 
9 9 8 8 38 1900 6 
9 9 12 12 38 1300 6 

8 5 12 12 28 2500 6 
8 5 9 9 28 700 5 
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Table 2. Results obtained using CALA team with example 2. 

Initial values Final value 

# Iterations 
- 

2 
2 
8 
8 
2 
2 
7 
7 

2 
2 
8 .  
8 
7 
7 
3 
3 

49 
49 
46 
46 
40 
40 
35 
35 

2200 
1300 
1900 
3400 
1000 
4500 
5500 
I900 

% Error 

15 
16 
13 
16 
14 
13 
16 
16 

the total of 100 test patterns), and that for example 2 is less than 17 (out of 100). It may be 
recalled that the minimum probability of misclassification achievable by the optimal 
discriminant function for example 1 was 0.06 and that for example 2 was 0.16. In the 
simple CALA algorithm, we can guarantee only a local convergence. However, from the 
tables given, one can see that the algorithm converges to a classifier with acceptably small 
error from many different starting points. 

For the third problem we use a team of three continuous action set learning automata. As 
in the previous example, 300 sample patterns are generated from each class. Also a test set 
consisting of 100 samples is generated from the two classes. In this problem it is difficult tQ 
analytically compute the minimum probability of misclassification. The number of 
misclassifications on the generated test set of patterns, with the parameter values set to 
those values corresponding to the optimal discriminant function (mentioned above), was 
found to be 11 (out of a total of 100 test patterns). The results of the simulations are 
provided in table 3, for 3 different initial values. 

4. Three-layer network consisting of teams of automata for pattern classification 

In the previous section we have considered a common payoff game of automata and 
showed how it can be utilised for pattern classification. There we assumed that the designer 
has decided on a parametric representation for the discriminant function, g(W, X). The 
algorithm itself is independent of what this function is or how it is represented. For 
example, we could have represented it as an artificial neural network with parameters being 
the weights and then the algorithm would be converging to the ‘optimal’ set of weights. By 
making a specific choice for the discriminant function, we can configure the automata team 
more intelligently and this is illustrated in this section. We will only be considering teams 
of finite action learning automata here though the method can be extended to include 

Table 3. Results obtained using CALA team with example 3. 

Initial values Final value 

P i  P i  4 4 % Error # Iterations % Error 

1 0.4 6 6 6 4 32 3700 11 
5 2 12 6 6 4 45 6400 12 
4 2 12 6 6 4 42 3400 12 
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CALA. The material in this section follows Phansalkar (1991) and Thathachar & 
Phansalkar ( I  995). 

In a two-class PR problem, we are interested in finding a surface that appropriately 
divides the feature space which may be assumed to be a compact subset of RN. Such a 
surface is well approximated by a piecewise linear function (Lippmann 1987) and can be 
implemented using linear threshold units in a three layer feedforward network. In this 
network the first layer units learn hyperplanes. Units in the second layer perform the AND 
operation on the outputs of some selected first layer units and thus learn convex sets with 
piecewise linear boundaries. The final layer performs an OR operation on the outputs of the 
second layer units. Thus this network, with appropriate choice of the internal parameters of 
the units and connections, can represent any subset of the feature space that is expressed as 
a union of convex sets with piecewise linear boundaries. The network structure is chosen 
because any compact subset of RN with piecewise linear boundary can be expressed as a 
union of such convex sets. We now describe how we can configure such a network with 
each unit being a team of automata. 

Let the first layer consist of M units and let the second layer have L units. That means we 
can learn at most M distinct hyperplanes and L distinct convex qeces. The final layer 
consists of a single unit. As before, let X ( k )  = [XI ( k ) ,  . . . , X N ( k ) ]  E RN be the feature 
vector. 

Denote by Uj, 1 5 i 5 M ,  the units in the first layer, each of wliich should learn an N -  
dimensional hyperplane. A hyperplane in RN can be represented by ( N  + 1) parameters - to 
represent the norinal vector and the distance from the origin of the hyperplane. Hence we 
will represent each unit, Ui, 1 _< i 5 M ,  by an ( N  + ])-member team of automata, A@,  
0 5 j 5 N .  The actions of automaton Alj are the possible values of thejth parameter of the ith 
hyperplane being learnt. Since we are using finite action set automata here4, as in 3.1, we 
discretise the ranges of parameters for making up the action sets of automata. Let Wii be the 
set of actions of automaton Ad whose elements will be denoted by Wljs, 1 5 s 5 rg, 0 5 j 5 N ,  
1 L: i 5 M .  Let pij(k) be the action probability vector of A, with components p i j ~  and 

Prob[aij(k) = " [ j s ]  = Pijs(k),  

where oc~(k )  is the action chosen by the automaton A, at time k.  The output of unit Ui at k 
is y@) where 

= 0, otherwise. (34) 

Let Vi be the ith second layer unit that has connections with n(i) first layer units, 
1 5 i 5 L. The n(i) first layer units that are connected to Vi are prefixed. Thus Vj can learn 
a convex set bounded by ntmost n(i)  hyperplanes. The unit Vi is composed of a team of n(i) 
automata Bv, 1 5 j 5 n(i), each of which has two actions: 0 and 1. The action probability 
distribution of Bij at k can be represented by a single real number qij(k) where, 

We could also use a team of CALA for each unit in the first layer. We use a FALA team here to demonstrate (in 
the next subsection) how one can introduce a perturbation term to LR-1 type algorithms so as to converge to 
global optimum. 
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and q ( k )  is the action selected by BQ at k. Let aj(k) be the output of Vi at instant k. ai(k) is 
the AND of the outputs of all those first layer units which are connected to Vi and are 
activated, i.e., zU(k) = 1. More formally, 

a@) = 1, if y j ( k )  = 1 'dj, 1 < j  5 n(i) ,  such that q ( k )  = 1, (35)  

= 0, otherwise. (36) 

The third layer contains only one unit whose output is a Boolean OR of all the outputs of 
the second layer units. Since here we want to learn a union of convex sets, no learning was 
needed in the third layer. 

This network of automata functions as follows. At each instant k ,  all the automata in all 
the first and second layer units choose an action at random based on their current action 
probability vector. That is, in each Ui,  each of the automata AQ chooses an action a ~ ( k )  
from the set W, at random based on the probability vector pii(k). This results in a specific 
parameter vector and hence a specific hyperplane being chosen b,y each Ui. Then, based on 
the next pattern vector, X ( k ) ,  each unit Ui calculates its output yi(k)  using (34). In each 
second layer unit Vi, all the n(i) automata Bq choose an action zo(k)  at random based on the 
probability qd(k).  Using these zq(k)  and the outputs of first layer units, each Vj would 
calculate its output ni(k) using (36). Using the outputs of the second layer units, the unit in 
the final layer will calculate its output which is I if any q ( k )  is 1; and 0 otherwise. Let Y ( k )  
denote the output of the final layer unit which is also the output of the network. Y ( k )  = 1 
denotes that the pattern is classified as class-1 and Y ( k )  = 0 denotes that the pattern is 
class-2. For this classification, the environment supplies a reinforcement ,8( k )  as 

P ( k )  = I ,  if Y ( k )  = t ( X ( k ) ) ,  
= 0, otherwise, (37) 

where t ( X ( k ) )  is the classification supplied for the current pattern X ( k )  (cf. 5 3.1). P(k )  is 
supplied as the common reinforcement to all the automata in all the units and then all the 
automata update their action probability vectors using the LR-1 algorithm as below. 

For each i j ,  0 5 j 5 N ,  1 5 i 5 M ,  the probability vectors pij are updated as 

Pij& + 1) =pijs(k) + XP(k ) ( l  -pi&)), if aij(k) = wijs, 

= pi j~  ( k )  ( 1 - A@( k ) )  , otherwise, (38) 

For each i, j ,  1 5 j 5 n(i), 1 5 i 5 L, the probabilities qij are updated as 

qij(k + 1) = q&) + AP(k) (1-  qi j (k ) ) ,  if q ( k )  = 1, 
= q ~ ( k )  (1 - XP(k ) ) ,  otherwise. (39) 

Let P(k) denote the internal state of the iietwork. This includes the action probabilities of 
all the automata in all the units. That is, it includes all. pij and all qu. Define 

Y(P) = E"@) lP(k) = PI * (40) 
For this network of teams of automata, the learning algorithm given by (38) and (39) will 

make P(k) converge to a local maximum off(.) .  Thus the action probabilities of all the 
automata will converge to values that would (locally) maximise the expected value of the 
reinforcement. 
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Figure 5. The form of the discriminant function for the pattern classification problem 
studied in example 4. 

It is clear from the earlier discussion in 5 3 and from (37), that maximising the expected 
reinforcement will result in maximising the probability of correct classification. Thus this 
network will learn a classifier which locally maxiinises the probability of correct 
classification. 

4.1 Simulations 

We consider two examples here to illustrate the three-layer network presented above. The 
first one is an artificial problem, while the second one is on a real data set. For the first one 
we consider a problem where the region in the feature space, in which the optimal decision 
is class-1, is a convex set with linear boundaries. Once again we consider only 2-dimen- 
sional feature vectors because it is easier to visualise the problem. Both these examples are 
from Thathachar & Phansalkar (1995b). 

Exampk 4. The feature vectors from the environment arrive uniformly from the set 
[0,1] x [0, I]. The discriminant function to be learnt is shown in figure 5. Referring to the 
figure, the optimal decision in region A is class-1 and that in region B is class-2. In region A, 

Prob[X E Class-1] = 1 - Prob[X E Class-21 = 0.9, 

and in region B, 

Prob[X E Class-1] = 1 - Prob[X E Class-21 = 0.1. 

The discriminant function to be learnt is 

 X XI - ~2 > 01 AND [--XI + 2 x 2  > 01, ' 

where X = ( X I  ~ 2 ) ~  is the feature vector. 
Since we need to learn only one'convex set, the network is made up of two first layer 

units, U1 and U2, and one fixed second layer unit. The second layer unit performs AND 
operation on the outputs of the first layer units. Each first layer unit has two automata. We 
used two rather than three because the hyperplanes to be learnt pass through the origin. 
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Each of the automata has four actions which are the possible values of the parameters 
to represent the hyperplanes. All four automata have the same action set given by 
{-2, -1,l ,  2). The parameter vector that represents a pair of hyperplanes through the 
origin will have four components and hence a choice of action by each automaton 
represents a parameter vector. In this problem, there are two sets of choices of actions by 
the four automata (or parameter vectors) given by (-1,2,2, - 1) and (2, -1, -1,2) at 
which the global optimum is attained. The learning parameter, A, is fixed at 0.005 for all 
automata. The initial action probability distribution is uniform. That is, the initial 
probability of each of the four actions is 0.25. Twenty simulation runs were conducted and 
the network converged to one of the two sets of optimal actions in every run. The number 
of samples generated is 500 and at each instant one pattern chosen randomly from this set 
is presented to the network. The average number of iterations needed for the probability of 
the optimal action to be greater than 0.98 for each automaton, is 10,922 steps. (A single run 
of 20,000 steps took about 3.5 s of CPU time on a VAX 8810.) 

Example 5. In this example, a 2-class version of the Iris data (Duda & Hart 1973) was 
considered. The data was obtained from the machine learning databases maintained at 
University of California, Irvine. This is a 3-class 4-feature problem. The three classes are 
iris-setosa, iris-versicolor and iris-viginica. Of these, setosa is linearly separable from the 
other two. Since we are considering only 2-class problems here, setosa was ignored and the 
problem was reduced to that of classifying versicolor and viginica. The data used was 50 
samples of each class with the correct classification. 

The network consisted of 9 first layer units and 3 second layer units. Each first layer unit 
has 5 automata (since this is a 4-feature problem). Each automaton had 9 actions which 
were { -4, -3, -2, -1 ,O,  1 ,2,3,4) ,  Uniform initial conditions were used. The learning 
parameters were 0.005 in the first layer and 0.002 in the second layer. 

In this problem we do not know which are the optimal actions of the automata and hence 
we have to measure the performance based on the classification error on the data after 
learning. 

For a comparison of the performance achieved by the automata network, we also 
simulated a standard feedforward neural network where we used backpropagation with 
momentum term (BPM) for the learning algorithm. The network has four input nodes (to 
take in the feature vector) and one output node. We tried two and three hidden layers. For 
the two hidden layer network we used 9 and 3 units in the hidden layers. For the three 
hidden layer netmrk we used 8 nodes in each hidden layer. Initial weights for the network 
were generated randomly. In the learning algorithm the learning parameter for the 
momentum term was set at 0.9 and various values of the learning parameter for the gradient 
term were considered and the best results are reported here. 

Simulations were conducted for perfect data (0% noise) and noisy cases. Noise was 
introduced by changing the known classification of the feature vector at each instant by a 
fixed probability. Noise levels of 20% and 40% were considered. With 40% noise, each 
sample has a probability of 0.6 of correct classification. 

The results obtained are summarised in table 4. These are averages of over 10 runs. 
The error reported in the table for the backpropagation algorithm is the root mean square 
error while that for the automata network is the probability of misclassification. While they 
cannot be directly compared, the perf0rmanc.e was about the same at the values reported. 

The results show that in the noise free-case, the backpropagation with momentum 
conlwges about 20% faster. However, this algorithm fails to converge even when only 20% 
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Table 4. Simulation results for IRIS data. The entry in the fourth column 
refers to RMS error for BPM and probability of misclassification for LK-I. 

Algorithm Structure Noise (%) Esros steps 

BPM 
BPM 
BPM 
BPM 
BPM 
BPM 
LH-I 
LR-I 

9 3 1  
9 3  1 
9 3 1  

8 8 8 1  
8 8 8 1  
8 8 8 1  

9 3  I 
9 3  1 
9 3  1 

0 
20 
40 
0 

20 
40 
0 

20 
40 

2.0 
- 
- 

2.0 
- 
- 

0.1 
0.1 
0.15 

66,600 
No convergence 
No convergence 

65,800 
No convergence 
No convergence 

7 8,000 
143,000 
200,000 

noise is added. The learning automata network continues to converge even with 40% noise 
and there is only slight degradation of performance with noise. 

4.2 A globally convergent algorithm for the network of automata 

In the three-layer network of automata considered above, all automata use the LR-1 

algorithm (cf. (38) and (39)). As stated earlier, one can establish only the local convergence 
result for this algorithm. In this subsection we present a modified algorithm which leads to 
convergence to the global maximum. 

One class of algorithms for the automata team that result in convergence to global 
maximum are the estimator algorithms. As stated in $3.3, these algorithms have a large 
memory overhead. Here, we follow another approach, similar to the simulated annealing 
type algorithms for global optimisatioii (Aluffi-Pentini et a1 1985, Chiang et a2 1987), and 
impose a random perturbation in the update equations. However, unlike in simulated 
annealing type algorithms, here we keep the variance of perturbations constant and thus our 
algorithm would be similar to constant heat bath type algorithms. Since a FALA learning 
algorithm updates the action probabilities, introducing a random term directly in the 
updating equations is difficult due to two reasons. First, it is not easy to ensure that the 
resulting vector after the updating remains a probability vector. Second, the resulting 
diflusion would be on a manifold rather than the entire space tlius making analysis difficult. 
To overcome such difficulties, the learning automaton is parainetrised here. The automaton 
will now have an internal state vector, u, of real numbers, which is not necessarily a 
probability vector. The probabilities of various actions are calculated based on the value of 
u using a probability generating function, g(. , .). The value of g(u, ai) will give the 
probability with which the ith action is chosen by the automaton when the state vector is u. 
Such learning automata are referred to as parametrised learning uutomata (PLA) 
(Phansalkar 1991). The probability generating function that we use is given by 

where u = (ul - .  . u,)' is the state vector and p = (PI - - ep,)' is the action probability 
vector. 

we will now give the complete learning algorithm for the network of automata following 
the same notation that was used earlier. Thus p+ is the probability of sth action, wgS, 
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of automaton A, which is the jth automaton in Ui, the ith first layer unit and so on. 
The functioning of the network is the same as before. However, the learning algorithm 
now updates the internal state of each automaton and the actual action probabilities 
are calculated using the probability generating function. Suppose uu is the state vector 
of automaton AQ and has components ucs. Similarly, vij is the state vector of automaton 
B,  and has components 2190 and v ~ l .  Let gq(. ) .) be the probability generating function 
for automaton AQ and let &(. ) .) be the probability generating function for automaton 
B,. As indicated by (41), the various action probabilities, pijs and qij are now given by 

The algorithm given below specifies how the various state vectors should be updated. 
Unlike in (38) and (39), there is a single updating equation for all the components of 
the state vector. P ( k )  is the reinforcement obtained at k, which is calculated as before 
by (37). 

For each i, j, 0 5 j 5 N ,  1 5.i 5 M ,  the state vectors uij are updated as 

For each i, j, 1 5 j 5 n(i) ,  1 5 i 5 L , the state vectors vg are updated as 

(44) 
d In jjij 

v& + 1) = vij,(k) + XP(k)- + Xh/(vij,(k)) + Jxsi j(k),  
dvljs 

where 

1 

The functions g i ( .  ) .) and its partial derivatives are evaluated at (u&), a&)), the 
current state vector and the current action of A,. Similarly, the functions S,(. , .) and its 
partial derivatives are evaluated at (vy ( k )  , zij ( k )  ) . 
h‘(.) is the derivative of h(.) defined by 

h(n) = -K(x  - Ll)2n) 

= 0, 1x1 L L1, 
= -K(x  + L1)2n) 

x 2 L1) 

x 5 - 4 1 )  (45 1 
where K and L1 are real numbers and n is an integer, all of which are parameters of the 
algorithm. 
{sij(k)} is a sequence of iid random variables (which also are independent of all the 
action probabilities, actions chosen etc.) with zero mean and varianace a2. CT is a 
parameter of the algorithm. 

In the updating equations given by (43) and (44), the h’(.) term on the right-hand side 
(rhs) is essentially a projection term which ensures that the algorithm exhibits bounded 
behaviour; and the s, term on the rhs adds a random walk to the updating. The P ( k )  term on 
the rhs is essentially the same updating as the LR-1 given earlier. To see this, it may be 
noted that 
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For this algorithm it is proved (Thathachar & Phansalkar 1995a) that a continuous-time 
interpolated version of the state of the network, U, given by the states of all automata, 
converges to a solution of the Langevin equation given by 

dU = VH(U) + odW, (47) 
where 

and W is the standard Brownian motion process of appropriate dimension. 
As is well-known, the solutions of the Langevin equation concentrate on the global 

maximum of H as CT tends to zero. By the nature of the function h(.) ,  this means the 
algorithm will converge to a state that globally maximises the expected value of the 
reinforcement if the global maximum state vector is such that each component is less than 
L1 in magnitude. Otherwise it will find a global maximum of H (which can be shown to be 
in a bounded region) and the expected value of,reinforcement at this point would be greater 
than or equal to that inside the bounded region allowed for the algorithm. For more 
discussion and precise statement of this convergence result, the reader is referred to 
Thathachar & Phansalkar ( 1995a). 

4.2a Simulations with the global algorithm: Here, we briefly give results of simulations 
with this algorithm on one example considered earlier in 5 4.1, namely, example 4. 

In this example, we have seen that the global maximum is attained at two parameter 
vectors (- 1,2 ,2 ,  - 1) and (2, - 1, - 1,2). One of the local maxima in that problem is given 
by ( l , l , l , l ) .  We have seen that the L R - ~  algorithm converges to the global maximum when 
started with uniform initial conditions, that is, equal initial probabilities to all actions in all 
automata. Here we pick the initial conditions such that the effective probability of the 
parameter vector corresponding to the local maximum is greater than 0.98 and the rest of 
the probability is distributed among the other parameter vectors. With this much of bias, 
the LR-I algorithm always converged to the local maximum. 

We try the globally convergent algorithm presented above with these initial conditions. 
The parameters in the h(.)  function are set as L1=3.Q, K=l.O, and n=2. The learning 
parameter is set at 0.05. The value for CT is initially 10 and is reduced as 

0 5 k 5 5000, a(k + 1) = 0.999o(k), 

and is kept constant thereafter. (Here a(k) is the value of CT used at iteration k. )  
Twenty simulations were done and each time the algorithm converged to one of the two 

global maxima. The average number of iterations needed for convergence was 33,425. This 
was with a set of 500 samples as in example 4. The time taken for one run of 50,000 
iterations was 36 s (CPU time) on VAX 8810. This, of course, does not compare favourably 
with the time taken by LR-1. The extra time seems to be mainly due to the fact that the 
action probabilities are to be computed at each instant and are not directly stored. The extra 
terms in the algorithm (the term for bounding the algorithm and the random term) do not 
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seem to slow down the algorithm much. A different choice of the probability generating 
function may result in a faster algorithm. However, the higher computational time and 
slower rates of convergence appear to be the price to be paid for convergence to global 
maximum, as in all annealing type algorithms. 

5, Discussion 

In this paper we have considered algorithms based on teams of learning automata for 
pattern classification. In all the algorithms, some parametric representation was chosen for 
the discriminant function and the objective was to learn the optimal values of parameters 
from the given set of preclassified samples. We have considered pattern classification 
problems where no knowledge regarding the distribution of pattern classes is assumed and 
further, there may be present both pattern noise and classification noise. 

The criterion of optimality is maximising probability of correct classification. As 
mentioned in I ,  algorithms that minimise mean square error do not necessarily maximise 
probability of correct classification. The problem is to find a classifier, h, that minimises 
F ( . )  given by (8) with a 0-1 loss function. While l ( h ( X ) , y )  is observable, F(h)  is not and 
hence we have to solve a regression problem. However, there are two additional complica- 
tions here. Even if 12 is parameterised by a real vector and F ( . )  is differentiable, l ( h ( X ) , y )  
may not be differentiable. Hence algorithms (like stochastic approximations) that rely on 
estimating the gradient information by perturbation methods, are not likely to be robust. In 
addition, we may choose the structure of the classifier in such a way that i t  is not easy to 
define a gradient (e.g. the three-layer network of 5 4). The main strength of automata based 
algorithms (and other reinforcement learning methods) is that they do not explicitly 
estimate the gradient. 

The essence of LA based methods is the following. Let 7-l be the space of classifiers 
chosen. Then we construct an automata system such that when each of the automata 
chooses an action from its action set, this tuple of actions corresponds to a unique classifier, 
say h, from 2. Then we give 1 - l ( h ( X ) , y )  (which, for the 0-1 loss function, is simply 
correctness or otherwise of classifiying the next training pattern with 12) as the 
reinforcement. Since the automata algorithms guarantee to maximise expected reinforce- 
ment, with iid samples the system will converge to an h that maximises F ( . )  given by (8). 
The automata system is such that its state, represented by the action probability 
distributions of all automata, defines a probability distribution over 7-1. It is this probability 
distribution that is effectively updated at each instant. Thus the automata techniques would 
be useful even in cases where X is not isomorphic to a Euclidean space (or when there is no 
simple algebraic structure on 3-1). 

In the simplest case, if the classifier structure is a discriminant function determined by N 
real valued parameters, then the actions of automata are possible values of the parameters 
and we employ a cooperating team of N automata involved in a common payoff game. 
If we use the traditional (finite action set) learning automata then we have to discretise 
the parameter space which may result in loss of precision. However, from the results 
obtained on the Iris data (cf. example 5 ) ,  it is easy to see that the automata algorithm, 
even with discretisation of parameters, performs at a level comparable to other techniques 
such as feedforward neural nets in noise-free cases and outperforms such techniques when 
noise is present. We have also presented algorithms based on the recent model of 
continuous action set learning automata (CALA) where no discretisation of parameters is 
needed. 
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The interesting feature of the automata models is that the actions of automata can be 
interpreted in many different ways leading to rich possibilities for representing classifiers. 
In the algorithms presented in $3, the actions of all automata are values of real-valued 
parameters. The discriminant functions (functions mapping to R) can be nonlinear 
in parameters also (as illustrated in the examples) since the form of the discriminant 
function does not affect the algorithm. In $4, another structure of automata are used to 
represent unions of convex sets. Here the actions of first level automata are real values 
denoting parameters to represent hyperplanes. The actions of second level automata are 
Boolean decisions regarding which hyperplanes to pick to make convex sets. Here the 
discriminant function is essentially a Boolean expression whose literals are simple linear 
inequalities. It is easy to see that a network structure like this will also be useful in learn- 
ing decision tree classifiers. Another example of this flexibility is that the same models 
discussed in 53  can be used for concept learning where the features may be nonnumeric 
and the discriminant function is a logic expression (Sastry et a2 1993, Rajaraman & Sastry 
1997.). 

All the automata algorithms presented here implement a probabilistic search over the 
space of classifiers. All the action probabilities of all the automata together determine a 
probability distribution over 7-t. At each iteration, an h E 3-1 is chosen (by each of the 
automata choosing an action) which is a random realisation of this probability distribution. 
Then the reinforcement obtained is used, in effect, to tune this probability distribution over 
7-l. This allows for a type of randomness in the search that helps the algorithms to generally 
converge to good parameter values even in presence of local minima. The three-layer 
automata network delivers good performance on the Iris data even under 40% classification 
noise. The CALA algorithm also achieves good performance (see simulation results in 
8 3.4) though theoretically only convergence to local maxima is assured. In the CALA 
algoiithm, this is achieved by choosing a higher value of the initial variance for the action 
probability distribution which gives an initial randomness to the search process to better 
explore the parameter space. 

We have also presented algorithms where convergence to global maximum is assured. 
The pursuit algorithm allows a team of finite action set automata to converge to the global 
maximum of the reward matrix. However, this algorithm has a large memory overhead 
to estimate the reward matrix. One can trade such memory overhead for time overhead 
using a simulated annealing type algorithm. We presented automata algorithms that use 
a biased random walk in updating the action probability distributions (cf. $4.2) and here 
the automata team converges to the global maximum witli a large probability. A similar 
modification is possible for the CALA algorithm also so that it can converge to the global 
maximum. 

There are some similarities between the automata approach discussed here and the 
approach based on genetic algorithms for optimisation. Like in genetic algorithms, in the 
automata approach, we maintain a population of possible parameter values. However this 
population is maintained implicitly through the effective action probability distribution of 
the system of automata. At each instant we evaluate this population and update it into a new 
population. The updating does not involve combining different parameters to make new 
ones. However, it may be argued that since we could keep an infinite population such 
combining may not be necessary. The second difference here is that the updating of the 
population is based on evaluation of a single randomly chosen member of the population 
unlike in the genetic algorithms where the updating is based on the evaluation of a large 
number of possible parameters. This can be incorporated into the automata framework by 
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making the automaton choose multiple actions and receive multiple reinforcements before 
updating the action probability distributions. For this, we can think of a parallel module of 
identical automata interacting with the environment. One can design learning algorithms 
for such parallel modules of automata which are €-optimal and which result in a large 
increase in the speed of learning (which increases almost linearly with the number of 
parallel units). Details of such automata structures can be found in Thathachar & Arvind 
(1998). In spite of the above similarities, there are many differences between automata 
algorithms and genetic algorithms. The main strength of the automata models is that all the 
algorithms discussed in this paper have rigorous convergence proofs. More work is needed 
to combine the analytical tractability of the automata algorithms with some of the ideas 
from genetic algorithms to design more flexible learning systems with provable conver- 
gence properties. 

There are other automata models that have been used for pattern classification. In all 
the models considered in this paper, the actions of automata are possible values for the 
parameters. It is possible to envisage an alternative set-up where the actions of the automata 
are the class labels. However, in such a case, we need to allow for the pattern vector to be 
somehow input to the automata system. Hence we need to extend the automaton model to 
include an additional input which we shall call context. In the traditional model of learning 
automata (whether with finite action set or continuous action set), the automaton does not 
take any input other than the reinforcement feedback from the environment. Within this 
framework we talk of the optimal action of the automaton without reference to any context. 
For example, when actions of automata are possible values of parameters, it makes sense to 
ask which is the optimal action. However, when actions of automaton are class labels, one 
can talk of the optimal action only in the context of a pattern vector that is input. Here with 
different context inputs, different actions may be optimal and hence we should view the 
objective of the automaton as learning to associate the right action with each context. Such 
a problem has been called associative reinforcement learning and automata models with 
provision for a context input, called generalised learning automata (GLA), are studied 
by many researchers (Barto 1985; Barto & Anandan 1985; Phaimlkar 1991; Williams 
1992). In contrast, the traditional automaton may be thought of as a model for non- 
associative reinforcement learning. In a GLA, the action probabilities for various actions 
would also depend on the current context vector input. Thus, if X is the context input then 
the probability of GLA taking action y is given by g ( X ,  W J ) ,  where g ( .  , . , .) is the action 
probability function of the GLA and W is a set of internal parameters. The learning 
algorithm updates the parameters W based on the reinforcement and the objective is to 
maximise the reinforcement over all context vectors. Due to the provision of the context 
input into the GLA, these automata can be connected together to form a network where 
outputs of some automata can forrn part of context input to other automata (Phansalkar 
1991; Williams 1992). There are learning algorithms for GLA that guarantee conver- 
gence to local maxima of the reinforcement function (Phansalkar 1991). These automata 
networks can be used for pattern classification very much like the models discussed in this 
paper. 

We thank G Santharam for his hqlp in preparing the figures for this manuscript. This work 
is supported in part by an Indo-US project under ONR grant number N-00014-J-1324. 
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