ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

Modeling of Transport Phenomena in a Gas Metal Arc Welding Process

Jaidi, J and Dutta, P (2001) Modeling of Transport Phenomena in a Gas Metal Arc Welding Process. In: Numerical Heat Transfer, Part A: Applications, 40 (5). pp. 543-562.

[img] PDF
dutta2001.pdf - Published Version
Restricted to Registered users only

Download (561kB) | Request a copy
Official URL: http://dx.doi.org/10.1080/10407780152619838

Abstract

A numerical study of three-dimensional heat transfer and fluid flow in a moving gas metal are welding (GMA IV) process is performed by considering various driving forces of fluid flow such as buoyancy, Lorentz force, and surface tension. The computation of the current density distribution and the resulting Lorentz force field is performed by solving the Max-well equations numerically in the domain of the workpiece. The phase change process during melting and solidification is modeled using the enthalpy-porosity technique. Mass and energy transports by droplet transfer are also considered through a thermal analysis of the electrode. The droplet heat addition to the molten pool is considered to be a volumetric heat source distributed in an imaginary cylindrical cavity within the weld pool ("cavity" model). This nature of the heat source distributed due to the failing droplets takes into account the momentum and thermal energy of the droplets. The numerical model is able to capture the well-known "finger" penetration commonly observed in the GMAW process. Numerical prediction regarding the weld pool shape and size is compared with the corresponding experimental results, showing good qualitative agreement between the two. The weld pool geometry is also found to be dependant on some key parameters of welding, such as the torch speed and power input to the workpiece.

Item Type: Journal Article
Publication: Numerical Heat Transfer, Part A: Applications
Publisher: Taylor & Francis
Additional Information: Copyright of this article belongs to Taylor & Francis.
Department/Centre: Division of Mechanical Sciences > Mechanical Engineering
Date Deposited: 13 Oct 2008 05:56
Last Modified: 20 Sep 2016 05:17
URI: http://eprints.iisc.ac.in/id/eprint/16047

Actions (login required)

View Item View Item