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Ion traps are widely used in optical spectroscopy, metrology and mass spectrometry. Targeted ions
(formed either in situ or transported into the trap from an external source) are isolated and trapped
using magnetic and/or electric fields. Over the past 15 years several different trap designs have
emerged for different applications. All these designs are variants of one of the three generic traps – the
Penning trap, the linear trap and the Paul trap. This paper will outlines the method used to trap ions
by these three techniques.

ION traps are devices which use magnetic and/or electric fields to confine the ions in a small region of space
to carry out a variety of studies ranging from measurement of optical spectroscopic properties of an isolated
single ion to mass spectrometric studies of an ensemble of fragment ions. Techniques for trapping ions vary
markedly both in their principle of operation as also in the complexity of implementation. In literature
numerous variants of three basic designs have been reported. These are (a) Penning1 trap, where trapping is
achieved by using a quadrupolar electric field and an axial magnetic field (b) linear traps2, which use
two-dimensional rf quadrupole fields and (c) Paul traps3 which uses three-dimensional quadrupolar field to
trap ions.

This brief overview has the motivation of introducing a few basic concepts specific to each of these three
techniques. This paper is not a review of current research in the area of ion traps but it is instead an effort to
collate and present information required for understanding the criticalities of each technique. The topics
chosen to be highlighted and the manner of presentation will certainly suffer from biases of our perspective
but a study of references cited will rectify this shortcoming.

Penning trap

Ion motion

Penning traps are devices that use both magnetic field as well as electric field to trap ions. The shape of the
trap used by mass spectroscopists varies considerably, from a simple cubic design to multicell and segmented
design to facilitate tandem experiments4. Optical spectroscopists, on the other hand, have quite uniformly
relied on the three electrode geometry5 (similar to that used in the Paul trap, to be discussed later), to produce
a quadrupolar field for trapping ions. While the magnetic field is used to restrict excursion of the ions in the
radial direction, low voltage dc potential on the end-cap electrodes trap ions in the axial direction (Figure 1).

Ions in a uniform electric and magnetic field experience the Lorentz force,  given by6
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From this equation it is possible to derive the cyclotron frequency w c as6
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where B0 is the static magnetic field. Ions within the cell are trapped by the magnetic field in a plane
perpendicular to the magnetic field but are free to move along the direction of the magnetic field. In view of
this, it becomes necessary to apply a small dc bias potential on the two electrodes that are perpendicular to
magnetic field axis. This dc potential creates a field that will now have to be incorporated to eq. (1). For a
cubic cell with an assumed quadratically varying potential between the trapping electrodes, the field in the
radial direction may be represented as6,

 

 

E(r) = E0r, (4)

 

where E0 = 2a Vz/a2 and a  = 1.386, a is the cell dimension, Vz is the trapping potential and r is the distance
in the radial (x, y) direction from the centre. This radial field has the effect of producing a force in the
outward direction, which is opposed, by the inward-directed



 

Figure 1.  a, Trajectory of ions in a Penning trap; b, Motion as seen along the axial direction consists of high frequency
cyclotron motion and the low frequency magnetron motion and c, The axial motion.

 

force exerted by the magnetic field. In the absence of this radial force the modified cyclotron frequency due
to insertion of eq. (4) into eq. (2) is

 

 (5)

 

which is quadratic in w . Solving for w we get the expression for the two natural frequencies of oscillation of
ion within the ion trap – the cyclotron (w c) and the magnetron frequency (w m) which are given by the
expressions
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While cyclotron motion is the predominant motion, eq. (6b) points to a second natural motion of the ion – the
magnetron motion. The magnetron frequency is the precessional frequency of ion along a path of constant
electrostatic potential. As can be seen by comparing eq. (6a) and (6b), the magnetron frequency is typically
much smaller than the cyclotron frequency especially if E0 is small.

In addition to two oscillations discussed above, the ions undergo one more oscillation referred to as the
trapping oscillation, on account of the dc bias voltage applied to the two opposite electrodes perpendicular to
magnetic field (Figure 1 c). These oscillations are in the axis parallel to the magnetic field (in the z-direction)
and are also generally of a lower frequency compared to the cyclotron frequency. Assuming that the
electrostatic potential between the two flat electrodes varies quadratically with distance (from the centre of
the trap), the trapping oscillation (w z) has the form6

 (7)

 

where d is related to the specific geometry of the trap, Vz is the applied dc bias potential on the two electrode
and vz is the trapping frequency.



If the charged particle moves in a uniform magnetic field in such a manner that its velocity vector 
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When a three-electrode trap geometry (similar to the Paul trap) is used, the angular frequencies of all three
motions are modified to incorporate the trap geometry. The cyclotron frequency, axial frequency, magnetron
frequency and the cyclotron frequency modified by the electric field (w ¢ c) are now given by5,8,9
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where r0 is the radius of the central ring electrode and 2z0 is the separation of the two end cap electrodes.
The cyclotron frequency is related to the other frequencies of oscillation by the expression5
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Linear trap and Paul trap

Motion of ions in the rf fields

 



The linear ion trap and the Paul trap are devices which use shaped electrodes and only rf oscillating fields (on
which a dc potential may be superimposed for specific application) to trap ions. The stability of ions within
the traps can be obtained by examining the force Fu experienced by a single ion of mass m, in the u(x, y, z)
direction, expressed as9–11

 (11)

 

where f is the effective potential in the trap between pairs of rods for the linear trap or between the ring and
the end-cap electrodes in a three-dimensional Paul trap.

Solutions to this second-order linear differential equation are obtained by re-writing the equations of motion
to fit the canonical form of the well-studied Mathieu equation12
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where for the linear trap, x , a dimensionless parameter and the Mathieu parameters au and qu are given by9

 

x  = w rft/2, (13a)
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and for the three-dimensional Paul trap these parameters are expressed as10

 

, (14a)
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where w rf is the rf drive frequency. Stable region of ion trajectories (Figure 2), given as a plot of iso-b u
contours, are characterized by the values of au and qu such that b u is between 0 and 1. The values of b u are
computed from the continuing fraction11

 

(15a)

 

 

which, to a first order approximation, can be written as

 (15b)

 

The stability plot (Figure 2) indicates that all au – qu values lying outside the area bounded by b z = 0 to 1
and b r = 0 to 1 will have unstable trajectories. A choice of an au – qu can be translated to dc voltage (U) and
rf amplitude (V) values by substitution in eq. (13) and eq. (14). Similarly, any point chosen within the stable
region will provide stable trajectories at the computed U and V values, for a given mass m, frequency w rf
and r0.

By way of a caution it must be noted that while the (au – qu) stability plot indicates regions of ‘mathematical’
stability, there are others factors which could cause ion loss. These include situations where ions, formed
close to one of the electrodes (rather than at the centre), collide with the electrodes during oscillation.
Further, ion–neutral and ion–ion interactions may lead to resultant charged species developing unstable
trajectories because of the change in their qu values.

Three characteristics of the ion cloud are used for different applications. First of these is the secular
frequency of the ion in the specific trap. The second important factor is to know the potential well depth that
will give an estimate of the energies required for destabilizing the ion from the trap. Finally, it may be
instructive to know the space charge limits of the ion cloud. These three characteristics will next be
discussed9.



Secular motion

Using the psudopotential well approximation13, which assumes that the motion of the ion in an rf trap is
composed of its secular motion and a micromotion due to the high frequency rf drive (Figure 3), it is possible
to derive the equation governing the motion of the ions in the z-direction as9,13

Figure 2.  Mathieu stability plot for the Paul trap.

 

Figure 3.  a, The cross-sectional view of the linear trap; b, The trapped ion undergoing a micromotion corresponding to the
rf drive frequency w rf and a macromotion corresponding to the secular frequency w secular.
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When this is compared with the equation of simple harmonic motion, the secular frequency w secular, may be
written as
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which gives

 (18)

with the approximation

 (19)

This approximation (eq. (19)) is referred to in literature as Dehmelt or adiabatic approximation11. Since the
secular frequency is related to b u, which in turn is related to au and qu, it is possible to compute the secular
frequencies by inserting the experimental values in eqs (14a) and (15a).

Dehmelt potential

In accordance with the pseudopotential well approximation, assuming that au = 0, the force experienced by
an ion of mass m and charge e in terms of Dehmelt potential14,15 can be given by

 

 (20)

 

from which for the linear trap we get

 

 (21)

 

and for the 3D Paul trap gives

 



 (22)

 

Eqs (21) and (22) relate the potential well depth of an ion of mass m trapped with a rf drive frequency, w rf,
and a rf potential V. Figures 4 and 5 are SIMION16 simulation of trapping fields experienced by the ion.
Figure 4 indicates the linear trapping field and Figure 5 shows the central low potential region to which all
ions migrate to get trapped.

As an example, for the case of a linear trap, for a rf drive potential of V = 100 Vo–p, operating at a frequency
of 1 MHz, the Dehmelt potential well depth Dz, experienced by ions between 20 and 200 amu varies as
shown in Figure 6.

Figure 4.  SIMION simulation of the potential well depth for a linear trap.

Figure 5.  SIMION simulation of the potential distribution in a Paul trap.



Figure 6.  Variation of Dehmelt potential with mass for a linear
trap.

Figure 7.  Variation of space charge with qz for 138Ba+ and 40Ar+.

Space charge limit

For a particle of charge Ze and mass m, moving in a two-dimensional quadrupole field f , the space charge
density may be computed using the Poisson’s relation, Ñ 2f  = 4p r max, the theoretical space charge density
can be shown to be9

 

 (23)

 

Hence the space charge Nmax (= r maxe) for a linear trap expressed as

 

(24)

 

As an example, Figure 7 shows the variation of the space charge density Nmax with variation of the operating
point qz for two ions 138Ba+ and 40Ar+.

Similarly, the space charge limit computed for the Paul trap may be represented as

 (25)

We will next turn on our attention to more practical
aspects of trap construction and discuss parameters
of importance in design of the several parameters involved. We have highlighted those that require special
attention.

Design consideration

Penning trap



The trap consists of a three-electrode geometry mass analyser17,18 made of non-magnetic material which are
shaped to conform to the eqs (26) and (27) (see below). This assembly is immersed in a high magnetic field
superconducting magnet aligned with the z-axis of the trap parallel to the magnetic field. The two end cap
electrodes are equally biased with low dc voltage with respect to the ring electrode for restricting ions in the
axial motion.

There are several methods to detect the different frequencies of the ion motion in the Penning trap8,19,20.
These methods are different from conventional methods to measure low ion current and are rather subtle in
that they measure the ‘image current’ developed across the end-cap electrode on account of the harmonic
motion of the ions within the trap. In order to understand how this image current is generated, consider a
simple two-electrode system within which an ion is undergoing circular motion (Figure 8).

As the ion traverses the path from one electrode to another, a small current is induced in both the electrodes.
Similarly, when the ion traverses back, the direction of the induced current is reversed. While the magnitude
of the induced current in the two electrodes remains the same, they are opposite phases. This causes an
oscillating current, an ‘image current’, with frequencies matching the axial frequencies of the oscillating ions.
It is this principle which is used for measuring ion currents and ion frequencies in Penning traps.

 

Figure 8.  Circular motion of ions between the two electrodes.

Figure 9.  The three segment rod assembly of a linear trap.

The axial motion is detected by measuring the image current across the end cap electrodes8. The image
current produced by the ions inside the trap are very small and in order to improve the signal strength, an
external excitation signal is applied to the electrodes, so that more ions pick up the excitation and the image
current with the excitation is easily detected at the excited frequency. In cases where a single or narrow band
of frequencies are to be examined, the sensing resistor employs additionally a tuned tank circuit, to achieve a
pure resistive sensing impedance, and avoid the time constants which would otherwise have a roll off at
higher frequencies.

The cyclotron motion of a single ion has been detected and measured by various techniques. In one



method21, where the central ring electrode is split into four isolated electrode quadrants, the image current
detection is carried out by sampling the current across any two opposite pair of quadrants. A more recent
technique19, involves the coupling of different modes by mode coupling of the required magnetron or
cyclotron motion with that of the axial motion.

Linear trap

The linear trap is a device consisting of three segments21,22, each segment being a four-rod assembly
arranged as shown in Figure 9. In order to achieve the required quadrupolar field, the cross-section profile of
the rods need to be hyperbolic. However, due to difficulties in machining such rods, a close approximation of
the quadrupolar field may be achieved by using circular cross-section rods. The required trapping field is
now obtained by maintaining r/r0 = 1.1468, where r and r0 are the radius of the cylindrical electrode and the
radius of inscribed circle of the quadrupolar assembly9,23.

From the point of view of trapping and isolating ions in linear traps, four factors are critical. These include:
(1) geometric alignment and machining accuracy of the individual rods; (2) the need for the low initial
energy of the ions introduced into the trap; (3) the requirement of high stability of all electronics circuits
used; (4) the electrical coupling of the three different segments which requires careful matching and tuning of
the rf circuit.

Paul trap

The Paul trap consists of a 3-electrode geometry assembly with a hyperboloid of one sheet forming the
central ring electrode and a hyperboloid of two sheets forming the two-end cap electrodes conforming to the
following expression24 (Figure 10)

 

 (26)
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where r0 is the radius of the ring electrode and 2z0 is the axial separation of the end caps. These equations
can be used to machine the ring and the end-cap electrodes after the choice of a suitable r0 and z0 is made.

For trapping ions in a Paul trap, rf excitation voltage is applied to the ring electrodes with no dc voltage when
operating on the q-axis (i.e. au = 0 axis). The magnitude of the rf voltage applied has to be chosen for
different experiments keeping in view the mass of ion to be trapped and the qu value of the trapped ion (recall
that qu will determine the Dehmelt potential). Like the linear



 

Figure 10.  a, The Paul trap assembly crosssection showing the 3-electrode geometry; b, the motion of the sample ion as
seen from the axial axis and c, d show the radial excursion of the trapped ion.

 

 

trap, dc potentials can also be superimposed on rf to operate at specific points on the stability plot.

Linear and Paul traps offer an attractive feature for isolation and trapping of targeted ions. It was shown that
ions of different masses undergo secular motion in the z-axis (eq. (18)). The unwanted ions are ejected from
the trap by applying an appropriate excitation with frequencies matching the secular frequencies of these
ions. One of the common methods for generating this excitation signal is achieved by Stored Waveform
Inverse Fourier Transform (SWIFT) technique6, where pre-determined frequencies components are inverse
Fourier transformed and synthesized in time domain, stored and applied when required in the experiment.
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