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Abstract: Finned projectiles that are intentionally spun are known to become locked in at a resonance

condition where the roll rate matches the pitch/yaw frequency. This phenomenon, called roll lock-in,

results in an amplification of the trim angle, which can lead to yaw instability. A less severe phenomenon is

that of transient resonance where the roll rate locks in at resonance briefly before continuing to build up to

the design value. However, the trim amplification during the brief period of resonance may be sufficient to

destabilize the projectile. In this paper, the problem of transient resonance for finned projectiles with a

centre-of-mass asymmetry is studied. Numerical simulations are used to illustrate transient normal and

reverse resonance. No yaw amplification is seen in both cases; rather the absolute value of the complex

angle of attack shows a drop during passage through resonance. It is suggested that this is a general feature

of the yaw response of finned projectiles undergoing transient resonance.
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NOTATION

G � ( r̂c hät0CNá=2)[Clp � (Ix=ml2)CD]

[ÿ(1 ÿ ó)=M ]0:5

h � ( Ĥ ÿ óT̂ )(1 ÿ ó)

Ĥ � [rSl=(2m)][CLá ÿ CD ÿ (ml2=I)

3 (CMq � Cm _á)][ÿ(1 ÿ ó)=M ]0:5

I transverse moment of inertia

Ix axial moment of inertia

K̂p ÿ[rSl3=(2Ix)][Clp � (Ix=ml2)CD][ÿ(1 ÿ ó)=M]0:5

l reference length, diameter

m mass

M [rSl3=(2I)]CMá

r̂c radial centre of mass offset, calibers

S reference area

t time

t1 � [ÿM=(1 ÿ ó)]0:5
�

t
0(V=l) dt

T̂ � [rSl=(2m)][CLá � (ml2=Ix)Cmpá]

3 [ÿ(1 ÿ ó)=M ]0:5

äT0 magnitude of non-rolling trim

è orientation angle of ~ô in missile-fixed axes
~è orientation angle of ~ô in aeroballistic axes

ì ~ô(h=äT0)ei(èÿ~è)

r air density

ó Ix=I

~ô complex angle of attack in aeroballistic axes

öM orientation angle of non-rolling trim
_ö non-dimensional roll rate

Subscripts

e equilibrium value

s design value

Superscripts

ÿ complex conjugate

´ d(.)=dt1

1 INTRODUCTION

Rolling finned projectiles with slight configurational

asymmetry are known to experience a phenomenon called

roll lock-in, where the roll rate settles down to a steady

state value that matches with the natural yawing frequency

of the projectile. The locked-in roll rate resonantly excites

the yaw dynamics, resulting in an amplification of the non-

rolling trim angle, which may be sufficient to destabilize

the yawing motion of the projectile.

As the projectile is spun up to the design roll rate, which

is usually much larger than the resonant value, the roll rate

is expected to pass through resonance. Depending on the

initial conditions at launch, the roll rate may build up to the

design value or may lock in at resonance. In some cases,

the phenomenon of transient resonance may occur, where

the roll rate may linger for a while at the resonance
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condition before eventually building up to the design value.

The amplification of the trim angle and the possibility of

yaw instability during transient resonance are matters of

significant research interest.

The problem of resonance lock-in of rolling finned

missiles was introduced by Nicolaides [1], who attributed

the phenomenon to the significant non-linear roll moments

induced by the trim angle under resonance conditions. The

primary cause of these induced roll moments was suggested

by Price [2] to be an offset centre of mass. The problem of

transient resonance in finned missiles with an offset centre

of mass was studied numerically by Price [2] and Barbera

[3], and in the case of an induced roll moment of

aerodynamic origin by Chadwick [4]. Dynamic instabilities

of missiles including roll lock-in have been discussed in a

survey paper by Murphy [5].

An analytical approach to the problem of roll lock-in for

a finned missile with a centre-of-mass offset was presented

by Murphy [6], who showed that both normal and reverse

lock-in solutions were possible. The equations of motion

reported by Murphy [6] were corrected by Ananthkrishnan

and Raisinghani [7], who also showed the possibility of

occurrence of quasi-steady resonant lock-in solutions. A

detailed review of the theory of resonant lock-in of rolling

finned projectiles with illustrative calculations has been

provided by Ananthkrishnan and Raisinghani [8]. A recent

paper by Platus [9] discusses the problem in the context of

coning instabilities in missiles and spacecraft.

In the present paper, the problem of transient resonance

of rolling finned projectiles with an offset centre of mass

is studied using the formulation of Murphy [6] and

Ananthkrishnan and Raisinghani [7]. Using numerical sim-

ulations, the effect of passage through resonance, both

normal and reverse, on the trim amplification is evaluated.

2 EQUATIONS OF MOTION

The equations of motion are written in an aeroballistic axis

system following the notation of reference [7] as follows:

�ö� K̂p[ _öÿ _ös ÿ iG(ìÿ ì)] � 0 (1)

�ì� [ Ĥ � i(2ÿ ó ) _ö] _ì� [(1ÿ ó )(1ÿ _ö2 � i _öh)� i�ö]ì

� ÿh(1ÿ ó ) exp(iöM) (2)

The roll rate _ö is scaled such that the resonance condition

corresponds to _ö � �1. Similarly, ì is the complex angle

of attack in the missile-fixed frame scaled with respect to

the trim angle magnitude at resonance. In the above

equations, h is a measure of the trim asymmetry with

orientation öM and G is a measure of the centre-of-mass

offset.

Equilibrium solutions of this system of equations are

obtained from

_öe ÿ _ös ÿ iG(ìe ÿ ìe) � 0 (3)

ìe � ÿh(1ÿ _ö2
e � i _öe h)ÿ1 exp(iöM) (4)

Stability of these equilibrium solutions can be determined

from a linearized small-perturbation analysis, otherwise

called Lyapunov's first method [10]. Stability of an

equilibrium solution is then indicated by the eigenvalues of

the Jacobian matrix evaluated at the equilibrium point. The

elements of the Jacobian matrix (also called the stability

matrix) have been listed in reference [7].

Equilibrium solutions for two combinations of the

parameters G, öM are given in Table 1. The other

parameters of the system are kept fixed at the following

values:

_ös � 3:0, h � 0:1, Ĥ � 0:1,

K̂p � 0:1, ó � 0:1

Case A in Table 1 shows a stable normal resonance solution

and a stable design solution, while case B shows a stable

reverse resonance solution and a stable design solution.

The normal resonance solution in case B may be noted to

be unstable. The two cases in Table 1 will be used to

illustrate the results in the rest of this paper.

Table 1 Equilibrium solutions and their stability

Case öM G _öe ìe Stability

A 908 3.0 1.020 ÿ0:8474� 0:3357i StableÐnormal resonance
1.129 ÿ0:1280� 0:3115i Unstable
2.920 ÿ0:0005� 0:0133i StableÐdesign solution

B 2708 5.0 ÿ0.976 ÿ0:8289� 0:4028i StableÐreverse resonance
ÿ0.862 ÿ0:1545� 0:3889i Unstable

0.754 0:0393� 0:2249i Unstable
0.990 0:9709� 0:1952i Unstable
3.115 0:0004ÿ 0:0115i StableÐdesign solution

C (h � 0) 0 3.000 0 StableÐdesign solution
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3 NORMAL AND REVERSE LOCK-IN

Cases A and B in Table 1 show two stable equilibrium

solutions each. Depending on the initial conditions at

launch, in each case, either of the two equilibrium solutions

may be attained. The effect of disturbances at launch is

given naturally in terms of initial conditions on the yaw

rate, with the complex angle of attack and roll rate assumed

to be zero initially.

To investigate case A in Table 1, the magnitude of the

initial yaw rate is chosen to be 1.0, with two possible

orientations: è� � 08 and è� � 1808. Results of numerical

simulations for these two initial conditions showing the

build-up of roll rate and the magnitude of the complex

angle of attack are plotted in Figs 1 and 2 respectively. It

can be seen that for è� � 1808, the roll rate builds up to the

design value (actually 2.920, as in Table 1) and the complex

angle of attack dies down to a value that is nearly zero. On

the other hand, for è� � 08, the phenomenon of normal

resonant lock-in with the complex angle of attack building

up to a value nearly equal to 1.0 can be seen.

As is well known from linear aeroballistic theory [8], the

yaw dynamics is tricyclic; i.e. it consists of three modesÐ

nutation, precession and trim. Stable dynamics implies that,

at steady state, both the nutation and precession modes will

have damped out, and the complex angle of attack at

equilibrium is precisely due to the trim component.

However, in the transient phase, before attainment of steady

state, the yaw dynamics is truly tricyclic, and the variation

in the magnitude of the complex angle of attack ì depends

Fig. 1 _ö versus t, case A in Table 1, with j _ì0j � 1:0

Fig. 2 |ì| versus t, case A in Table 1, with j _ì0j � 1:0
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on all three modes. For example, |ì| can decrease even

when the trim mode is being amplified because of the

greater attenuation of the nutation and precession modes.

This effect can be seen in Fig. 2 where, for è� � 08, the

peak of the oscillations in |ì| initially decreases before

building up to the steady state value.

The dynamics for case B in Table 1 can be studied in a

similar fashion. Once again the magnitude of the initial

yaw rate is chosen to be 1.0 with two possible orientations:

è� � 908 and è� � 2708. Results of numerical simulations

for these two initial conditions showing the build-up of the

roll rate and the magnitude of the complex angle of attack

are plotted in Figs 3 and 4 respectively. For è� � 908, Fig.

3 shows the roll rate building up to the design value, while

the complex angle of attack in Fig. 4 settles down to a near-

zero value. On the other hand, for è� � 2708, the

phenomenon of reverse resonant lock-in with the complex

angle of attack building up to a value nearly equal to 1.0

can be seen. Once again, the peak of the |ì| oscillations in

Fig. 4 for è� � 2708 shows a dip before increasing to the

equilibrium value for the same reason as before.

4 TRANSIENT RESONANCE

It may be expected that for some values of initial conditions

the roll rate will linger at resonance for a period of time

before breaking out and eventually reaching the steady

state design value. It is conjectured that the projectile

Fig. 3 _ö versus t, case B in Table 1, with j _ì0j � 1:0

Fig. 4 |ì| versus t, case B in Table 1, with j _ì0j � 1:0
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would experience yawing motion of increased amplitude

during the period it is at resonance, owing to amplification

of the trim mode. In that case, yaw instability may arise

even for initial conditions that do not lead to stable resonant

lock-in solutions.

In order to evaluate the yaw response during transient

resonance, the ideal projectile is introducedÐone with no

centre-of-mass offset (G � 0) and no trim asymmetry

(h � 0). The only equilibrium solution with G � 0 is the

design solution listed in Table 1 under case C. With h � 0,

the yaw dynamics is independent of öM, and reduces to just

the nutation and precession modes, which, for stable

dynamics, implies a steady state value of ì equal to zero.

On the other hand, for the problem of transient resonance,

the steady state ì is near-zero (corresponding to the design

solution), but with a yaw response that combines all three

modesÐnutation, precession and trim. Hence, the yaw

response of the ideal projectile provides a suitable standard

against which the expected yaw amplification during

transient resonance, for both case A (öM � 908) and case B

(öM � 2708), can be compared.

4.1 Transient normal resonance

The transient resonance phenomenon is first investigated

for case A in Table 1. The magnitude of the initial yaw rate

is chosen to be 0.6 with an orientation of è� � 08. The

variation of the roll rate for this initial condition, plotted in

Fig. 5, clearly shows transient normal resonance. The

build-up of the roll rate for case C in Table 1 for identical

initial conditions is also shown in Fig. 5 for comparison.

The variation in the magnitude of the complex angle of

attack for the two cases is depicted in Fig. 6. It can be seen

that the peak values of |ì| for case A begin to fall as

compared to the peaks for case C around the time the roll

rate for case A is temporarily locked in at resonance. The

effect of this decrease in |ì| continues to be seen for larger

values of time where the mean value of |ì| for case A is

distinctly lower than that for case C, as they tend to the

equilibrium value of ì � 0. Thus, it can be seen that there

is no yaw amplification during transient normal resonance.

On the contrary, the yaw response shows a distinct drop in

the magnitude of the complex angle of attack during and

after passage through resonance. No yaw amplification was

noticed for transient normal resonance resulting from other

initial yaw rates either.

4.2 Transient reverse resonance

Transient resonance for case B in Table 1 is investigated

next. Initial conditions for the yaw rate are chosen with a

magnitude of 0.8 and an orientation è� � 2708. The build-

up of the roll rate with these initial conditions for cases B

and C is plotted in Fig. 7. The roll response for case B

shows briefly the transient reverse resonance phenomenon.

The variation in the magnitude of the complex angle of

attack for the two cases is depicted in Fig. 8. The fall in the

peak values of |ì| during the period of reverse resonance is

dramatic. However, once the roll rate for case B catches up

with that for case C, the oscillations in |ì| for the two cases

are similar, but for the lower amplitudes in case B. Once

again, there is no yaw amplification during transient reverse

resonance. Instead, there is a sharp fall in the magnitude of

the complex angle of attack during passage near reverse

resonance. Transient reverse resonance, like reverse lock-in

[7], was found to occur for a very restricted set of initial

yaw rates.

Fig. 5 _ö versus t, cases A and C in Table 1, with j _ì0j � 0:6
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5 DISCUSSION

The lack of yaw amplification during transient resonance

can be explained by the same effect that was noticed in

Figs 2 and 4, which resulted in a decrease in the peak

values of |ì| before the build-up to the steady state value.

In other words, any amplification of the trim can be more

than compensated for by a suitable variation of the

magnitude and orientation of the nutation and precession

modes.

It is tempting to explain the yaw behaviour during

transient resonance in terms of the increased damping of

the nutation and precession modes in the vicinity of the

resonant lock-in solutions, as can be seen by evaluating the

eigenvalues of the Jacobian matrix for the various stable

solutions listed in Table 1. However, this argument is

fallacious, since it must be noted that the dynamics

represented by the eigenvalues is accurate only for small

perturbations from an equilibrium state. The state variables

during transient resonance are not expected to be in a small

neighbourhood of the stable resonance solution, lest they

find themselves within the basin of attraction of the

equilibrium at resonance and end up at a stable lock-in

solution at steady state.

Instead, it is instructive to consider the roll equation

rewritten as follows:

Fig. 7 _ö versus t, cases B and C in Table 1, with j _ì0j � 0:8

Fig. 6 |ì| versus t, cases A and C in Table 1, with j _ì0j � 0:6
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�ö � K̂p[( _ös ÿ _ö)ÿ 2G Im(ì)] (5)

At normal lock-in, _ö � 1 with �ö � 0, which gives

Im(ì) � 1=G. At reverse lock-in, _ö � ÿ1 with �ö � 0,

which gives Im(ì) � 2=G. These can be verified for

G � 3:0 for case A and G � 5:0 for case B in Table 1.

During transient normal resonance, _ö � 1, and the first

term on the right-hand side, _ös ÿ _ö � 2, is nearly constant.

However, now �ö 6� 0, and as _ö stops building up for a brief

while around the resonance value, the positive �ö must

decrease. It follows from the second term on the right-hand

side that for large �ö, |ì| must begin to decrease. This

argument can also be applied for the problem of transient

reverse resonance with similar conclusions. Thus, the above

discussion suggests that the lack of yaw amplification

during transient resonance is a general phenomenon and is

not limited to the initial conditions investigated in this

study. However, confirmation of this point can only be

sought from detailed numerical studies for projectiles with

different parameter values and different initial conditions.

It must also be mentioned that the pitch/yaw equation

considered for the present study did not include the non-

linear induced side moments suggested by Nicolaides [1].

The induced side moments effectively decrease the damp-

ing in yaw that could result in an unlimited build-up of yaw

under resonance conditions and lead to a phenomenon

called catastrophic yaw. Extension of the model in

references [6] and [7] to incorporate these non-linear side

moment terms is yet to be done.

6 CONCLUSIONS

Transient resonance of finned projectiles with a centre-of-

mass offset has been studied. Numerical simulations are

carried out that capture the phenomenon of transient

resonance, both normal and reverse. It is seen that there is

no yaw amplification during passage through resonance.

Rather, a decrease in the magnitude of the complex angle

of attack |ì| is noticed for both transient normal and reverse

resonance. It is suggested that a decrease in |ì| is a general

feature of the yaw response of finned projectiles during

passage through resonance.
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