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The 1998 Nobel Prize in Physics has been awarded jointly to Robert B. Laughlin, Stanford University, 
USA, Horst L. St?r, Columbia University and Bell Labs, USA, and Daniel C. Tsui, Princeton 
University, USA, for ‘their discovery of a new form of quantum fluid with fractionally charged 
excitations’ appearing in the fractional quantum Hall effect. The quantum Hall effect has two versions, 
the integer (which won an earlier Nobel Prize) and the fractional. These two versions share the 
remarkable feature that an experimentally measured quantity, characterizing one aspect of a complicated 
many-particle system, stays perfectly fixed at some simple and universal values even though many 
different parameters of the system vary from sample to sample (in fact, some parameters like disorder 
vary quite randomly). In addition, the fractional quantum Hall effect has the astounding property that the 
low-energy excitations of the system carry a charge which is a simple fraction of the charge of an 
electron, even though the system is composed entirely of particles like atoms, ions and electrons, all of 
whose charges are integer multiples of the electronic charge. 

In 1879, Edwin Hall discovered 
that when a two-dimensional layer 
of electrons (such as in a thin gold plate) is placed in a magnetic field perpendicular to the layer 
(pointing, say, 
in the  an electric field along one direction in the layer (say, 
the  causes a current flow along the  which is at right angles to both the electric and 
the magnetic field. The ratio of the current density Jx to the electric field Ey is now called the Hall 
conductivity s xy. This quantity depends on the strength of the magnetic field, and the density and sign 
(negative for electrons and positive for holes) of the charge carriers. Classically, the Hall effect can be 
understood as being caused by the Lorentz force which acts on a charged particle moving in a magnetic 
field; this force acts in a direction perpendicular to both the velocity and the magnetic field and is 
proportional to the product of the two. The Hall conductivity is to be distinguished from the usual 
conductivity s xx which denotes the ratio of the current density to the electric field along the same
direction. 

Hall performed his experiments at room temperatures and at magnetic fields of less than a Tesla 
(104 Gauss). By the end of the 1970s, semiconductor technology had progressed to the extent that 
experimenters could perform similar measurements at the interface of a semiconductor and an insulator 
(such as a Si–SiO2 device called a MOSFET) at very low temperatures of around 1 K in magnetic fields 
of around 10 Tesla. The two-dimensional interface acts as a quantum well which is very narrow 
(typically, 5 ?  10–7 cm wide) in the direction perpendicular to the interface. This freezes out the motion 
of the electrons (or holes) in that direction, thereby constraining them to move only along the two 
dimensions parallel to the interface. The density of carriers in these systems is about 1011 cm–2, while 
the mobility of the carriers is typically 104 cm2/V-s. We recall here that the mobility denotes the drift 
velocity achieved by a carrier when an electric field of unit strength is applied. The finite value of the 
mobility in the above systems is due to the various imperfections and impurities which cause the carriers 
to get scattered every 10–12 s or so. 

In 1980, the German physicist Klaus von Klitzing and his collaborators observed in such systems that 
the Hall conductivity s xy does not vary linearly with the strength of the magnetic field (as the classical 
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argument would suggest) but rather shows plateaus, i.e. s xy does not vary at all for certain ranges of the 
applied magnetic field. Further, its value at the plateaus is quantized at the remarkably simple values 

 (1) 

where r is a small integer like 1, 2, 3,... (whose value depends on the density of the carriers and the 
magnetic field), e is the charge of an electron, and h is 2p times the Planck’s constant h . (The value of s
xx is extremely close to zero wherever s xy has a plateau.) Amazingly, the quantized values of s xy do not 
depend at all on any other parameters of the system such as its shape and size, the effective masses of 
the carriers, the strengths of their interactions with each other and with impurities, and the density of 
impurities. Finally, the plateau values of s xy have an experimental uncertainty of only about one part in 
ten million which makes it one of the most accurately measured quantities in all of science. For this 
reason, the integer quantum Hall effect (IQHE), so called because r is an integer, is now used to define 
the value of e2/h which is a fundamental constant of nature. The 1985 Nobel Prize in Physics was 
awarded to von Klitzing for his discovery of the IQHE. 

The IQHE can be explained by invoking some facts from one-particle quantum mechanics. A magnetic 
field leads to the formation of energy bands called Landau levels which are separated from each other by 
gaps. The number of states in each Landau level is directly proportional to both the area of the system 
and the strength of the magnetic field. Due to the Pauli exclusion principle for fermions, each state can 
accommodate only one electron; at very low temperatures, all states up to a maximum energy called the 
Fermi energy are occupied. If the density of electrons is such that exactly an integer number of Landau 
level is filled, then the Hall conductivity is given by that integer times e2/h. Further, the existence of a 
finite energy gap to the next (unoccupied) Landau level would lead to the vanishing of the usual 
conductivity s xx at a plateau at zero temperature; if the temperature is finite but much smaller than the 
gap, then s xx is exponentially small. 

The above simplified discussion has to be modified in a major way to take into account the 
imperfections and impurities which are randomly located in the system; we will refer to all these point 
objects as disorder. In an ideal system with no disorder, each Landau level would be infinitely narrow 
and all the states would be spatially extended. In a real system, the disorder broadens each Landau level, 
and also converts a number of states from extended states (which can carry current) to localized states 
(which cannot carry current). We thus get alternating and non-overlapping bands of extended and 
localized states, with the extended bands staying close to the energies of the ideal Landau levels. The 
existence of localized bands initially led people to worry that the Hall conductivity may depend 
sensitively and unpredictably on the amount of disorder. However, using some clever arguments based 
on gauge invariance and topology, theorists were able to prove the amazing result that the extended band 
in any given Landau level contributes exactly the same amount to the Hall conductivity as that entire 
Landau level would have contributed if there had been no disorder and all the states had been extended. 
This means that if the Fermi energy lies within a band of localized states, and there is an integer number 
of filled bands of extended states below that energy, then the Hall conductivity is simply equal to that 
integer times e2/h. Thus, although the localized states do not contribute to the Hall conductivity, they are 
crucial for the finite widths of the conductivity plateaus; this is because the Hall conductivity does not 
change at all if the Fermi energy moves by small amounts (due to changes in the carrier density or 
magnetic field), as long as it stays within a given localized band. 

In 1982, St?r, Tsui and collaborators working on some other systems discovered additional plateaus in s
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xy of the same form as in eq. (1), but with the parameter r now equal to some simple odd-denominator 
fractions like 1/3, 2/3, 1/5, 2/5, 3/7,...; simultaneously, s xx vanishes. Note that r denotes the number of 
Landau levels occupied by electrons, hence a value of r less than 1 means that the lowest Landau level is 
only partially filled. Although this fractional quantum Hall effect (FQHE) sounds similar to the IQHE, 
both its discovery and its theoretical understanding involved much greater levels of difficulty and 
subtlety than the IQHE. Experimentally, the carrier mobility required to observe the FQHE is 
many times larger, i.e. about 105–106 cm2/V-s. This required the use of a new class of systems such as 
GaAs–AlGaAs heterostructures. A technique called modulation doping molecular beam epitaxy was 
used to produce interfaces which are extremely sharp, almost free of defects and well-separated from the 
impurities (namely, the dopant atoms which act as donors or acceptors). This vastly reduces the rate of 
scattering of the carriers which reside at the interface and therefore leads to much higher mobilities. The 
FQHE also requires much lower temperatures going down to about 0.1 K and higher magnetic fields up 
to about 30 Tesla (since the filling r is inversely proportional to the magnetic field). 

The discovery of the FQHE raised the theoretical question of why there should be a gap above the 
ground state (as is suggested by the vanishing of s xx) when the lowest Landau level is only partially 
occupied by electrons. Clearly, this requires an explanation which is very different from the one for the 
IQHE. Within a year, Laughlin came up with a many-body explanation for the existence of a gap. In 
doing so, he also discovered a very accurate variational quantum mechanical wave function for the 
system which explained all the observed phenomena and predicted some new ones. Laughlin’s key idea 
was that the Coulomb repulsion between the carriers (assumed to be electrons from here on) must play a 
crucial role in the FQHE unlike the case of the IQHE. This must lead to the electrons ‘avoiding’ each 
other as best as they can, subject to the constraint that they are all in the lowest Landau level. Using 
some general properties of states in the lowest Landau level, Laughlin introduced a variational many-
electron wave function of the form 

 

(2) 

where zj = xj + iyj and z*j = xi – iyj are complex variables denoting the position of electron j in the x – y
plane; to simplify the notation, we have scaled the coordinates in some way so as to make them 
dimensionless. For m equal to an odd integer, this wave function is antisymmetric (as the wave function 
of several identical fermions should be; the spin degree of freedom plays no role here since the electrons 
are completely polarized in the lowest Landau level), vanishes very rapidly as any two particles 
approach each other (thereby ensuring that they stay away from each other and minimize their Coulomb 
repulsion), and, very importantly, describes a state with an uniform density corresponding to the special 
value of Landau level filling given by r = 1/m. (For other filling fractions which are not of the form 1/m, 
Laughlin and others suggested related variational wave functions using similar arguments.) The state 
defined by eq. (2) describes a peculiar kind of quantum liquid which has no long-range positional order 
(unlike the atoms in a crystalline solid), but does have a long-range phase correlation; this is related to 
the fact that the wave function picks up a phase of 2p m when any particle j is taken in a loop around any 
other particle k, no matter how large the loop is. 

After showing that the wave function in eq. (2) perfectly explains the properties of the ground state such 
as the conductivity quantization, Laughlin went on to study the nature of the low-energy excitations 
called quasiparticles. He showed that these are separated from the ground state by an energy gap of 

Page 3 of 5INTEGERS & FRACTIONS



about 1 K, and that the quasiparticle size is typically about 5 ?  10–7 cm which is substantially smaller 
than the average distance between two electrons (about 3 ?  10–6 cm). There are two types of 
quasiparticles, called quasielectrons and quasiholes; in the neighbourhood of these objects, the local 
electron density is slightly larger or smaller, respectively, than the special value of density (or filling) 
given by the Laughlin wave function. Since each quasiparticle costs a finite energy, the system tends to 
oppose any attempts to change its electron density away from one of the special fillings of 1/m; this 
property is called incompressibility and it is one of the striking features of the fractional quantum Hall 
system, sometimes called a Laughlin liquid. If a small change in filling is forced upon the system by 
varying either the number of electrons or the magnetic field, the system reacts by producing a small 
number of quasielectrons or quasiholes which then go and bind to one of the points of disorder; this 
allows the rest of the system to remain at the special filling, the Hall conductivity thereby remaining 
exactly at the quantized value. Thus the finite widths of the Hall plateaus again depend on the presence 
of a small amount of disorder. 

Laughlin also made the extraordinary prediction that the quasiparticles should carry a charge which is a 
fraction of the electron charge, e.g. the quasielectron and quasihole charges should be equal to ?  e/m, 
respectively, if r = 1/m. This prediction has been directly verified in recent experiments which study tiny 
fluctuations (called shot noise) in the current flowing across a narrow region of a fractional quantum 
Hall system. The amount of shot noise is directly proportional to the charge of the carriers, and the 
experiments conclusively proved that these are fractional. (Although the quasiparticles cannot move 
through the bulk of a quantum Hall system because they get pinned by impurities, they do move freely 
along the edges of such a system, and they 
can jump from one edge to a nearby edge as shown by the shot noise experiments.) 

For those who are uneasy with the idea of fractional charge, we should emphasize that the quasiparticles 
in a fractional quantum Hall system are not elementary particles (like electrons or photons), but are 
collective excitations involving a large number of electrons. It 

was already known in another many-body system (polyacetylene chains) that composite objects may 
carry fractional charge. The FQHE has provided us with a new and wonderful example of objects with a 
fractional quantum number. Incidentally, it has been suggested by some theorists that these 
quasiparticles are neither fermions (obeying Fermi–Dirac statistics) nor bosons (obeying Bose–Einstein 
statistics), but that they obey a novel kind of quantum statistics (called fractional or anyonic statistics) 
which lies in between the two possibilities; however this has not yet been proved experimentally. 

Laughlin’s wave function has led to new ways of thinking about strongly interacting many-body 
systems. For instance, if r = 1/m where m is odd, it is natural to think of a quantum Hall system as being 
made up of ‘composite bosons’ which are combinations of electrons and m elementary quanta of 
magnetic flux. These ‘bosons’ effectively see a zero magnetic field, since the entire magnetic field has 
been ‘absorbed’ in the way these strange particles are defined. Now one can view the FQHE as resulting 
from a Bose–Einstein condensation of these bosons at low temperatures, in the same way that Cooper 
pairs of electrons condense in superconductors or the atoms of He4 condense to form a superfluid at low 
temperatures. This idea of composites of electric charge and magnetic flux has turned out to be 
remarkably useful in explaining many other aspects of 

quantum Hall systems, such as the behaviour of the system at the filling r = 1/2 (which does not show a 
conductivity plateau, but has some other interesting properties which are well-explained by the notion of 
‘composite fermions’). 

Before ending, one should appreciate that the theoretical and experimental work on the quantum Hall 
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effect is a reflection of the high level of both industrial and university research and the close 
collaboration between the two in the West, particularly in the USA.  
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