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Abstract—Direct methanol synthesis from CH4 and O2 has
been experimentally studied using pulsed discharge plasma in
concentric-cylinder-type reactors. The methanol production be-
comes efficient with an increase in the average electric field
strength of the reactor. A combination of the pulsed discharge
and catalysts was tested and was proved to be effective in
increasing both the production and selectivity of methanol. In
the present stage, about 2% of CH4 can be converted into
other hydrocarbons, and a methanol yield of around 0.5% and
selectivity of 38% can be obtained when a catalyst of V2O5 +

SiO2 is combined with the pulsed discharge plasma.

Index Terms—Combined effect of plasma and catalyst, direct
methanol synthesis, nonthermal plasma, plasma chemical reac-
tion.

I. INTRODUCTION

CONVERSION of hydrocarbon fuels to methanol will pro-
mote their efficient utilization, since methanol can easily

be converted to hydrogen using low-temperature heat energy,
which would otherwise be disposed of [1]. The conventional
chemical process for methanol synthesis from CO and H
requires high pressure and high temperature [2]. A plasma
chemical process is a possible alternative to the conventional
methanol synthesis, since chemical reactions can be promoted
at lower pressure and temperature conditions. In flue gas
cleaning or decomposition of volatile organic compounds,
nonthermal plasma process has been widely investigated,
and promising results have been obtained [3]–[6]. There are,
however, a few reports on direct methanol synthesis using
nonthermal discharge plasma. Okazakiet al. reported that
methanol synthesis can be made from CHand O by pulsed
discharge plasma [7]. Eliassonet. al. reported the possibility
of using silent discharge for hydrogenation of COto produce
useful hydrocarbon components [8]. Hijikataet al. used glow
discharge or spark discharge in reduced pressure condition and
produced methanol from CHand H O [9]. This experimental
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result indicated an important advantage of nonthermal plasma
process that can promote endothermic chemical reactions.
Energy efficiency of methanol production in these previous
works, however, was still insufficient to substitute the con-
ventional method of methanol synthesis. Further studies are
necessary to optimize the type of plasma and gas condition
and to improve electrical power conversion efficiently and gas
conditions. A combination of nonthermal plasma and catalyst
might improve methanol production efficiency.

We investigated the methanol synthesis from CHand O
using pulsed discharge plasma. In this paper, we present the
performance evaluation carried out in regard to the choice of
corona electrodes and pulse energizing circuit. In addition, the
effect of concentration of reactants (CH O mixtures) was
studied. We also present the results of the combined effect of
catalysts and electrical discharges on methanol synthesis.

II. EXPERIMENTAL SETUP

The corona reactor consists of an inner metal electrode
and an outer electrode of aluminum foil wrapped around
a glass tube. The glass tube eliminates sparking between
the electrodes. Fast-rising high-voltage pulses were used in
this experiment. Pulsed discharge takes place, which self
extinguishes when surface charge builds up on the glass
surface. In fast-rising pulsed discharges, high electric field
can be established before the formation of space charge and
electrons are driven, therefore, the contribution of electrical
energy to plasma formation is considered essential [10].

In the present experiment, we tried four types of corona
electrodes: straight wire reactor (SWR), barbed plate reactor
(BPR), helical wire reactor (HWR), and metal tubular reactor
(MTR). The SWR consists of the conventional straight wire
as the corona electrode. The BPR assembly consists of a
series of rows and columns of steel barbs (pins) fixed on a
thin aluminum plate acting as the corona electrode. In the
HWR, a helical wire forms the corona electrode. Finally, the
MTR consists of a uniform hollow metal tube as the corona
electrode.

Table I shows the average electric field strength of these
reactors. These values are calculated by dividing the peak
voltage by the discharge gap. Methanol production and power
transfer efficiency are also tabulated. These values were mea-
sured with peak voltage of 25 kV, CHO , room
temperature, and gas residence time of 6.7 s. The power
transfer efficiency was calculated as the discharge power
(integration of power waveform) divided by the input power.
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(a)

(b)

Fig. 1. Reactors used in the experiment. (a) MTR. (b) SWR.

TABLE I
PERFORMANCE EVALUATION OF CORONA REACTORS (APPLIED

VOLTAGE = 25 kV, CH4:O2 = 94 : 6, AT ROOM

TEMPERATURE AND ATMOSPHERIC PRESSURE)

We selected the MTR because of its superior performance in
regard to the other electrodes ( V/m).

Fig. 1(a) shows the schematic of the MTR. The uniform
metal tubular reactor consists of a glass tube (OD: 20 mm,
ID: 17.5 mm) with a large inner tubular corona electrode (OD:
16.1 mm, ID: 13.7 mm, copper). The discharge gap was 0.7
mm thick. The effective gas volume and length of the reactor
were, respectively, 14 ml and 370 mm. The schematic of the
SWR is shown in Fig. 1(b). Straight wire (diameter: 0.2 mm,
stainless steel) was used for the inner electrode, instead of the
tubular electrode of the MTR. The reaction volume and the
length of the SWR were 27 ml and 120 mm, respectively.

Different types of electrical circuits were also investigated
to achieve higher power transfer efficiency for the selected
reactor. Fig. 2(a)–(d) shows the different circuits of the pulse
generator using the rotary spark gap switch (RSG) that was
used in the present study.

Maintaining a high charging capacitance of the order of 27
nF as shown in circuit 1 [Fig. 2(a)] reduces the ripple in the
rectified dc output, but introduces a small dc component in
the pulse output. However, the methanol production was high,
owing to high power transfer efficiency.

Connecting a high resistance across the reactor as in circuit
2 [Fig. 2(b)] decreases not only the dc component in the pulse,
but, also, the power delivered to the reactor.

(a) (b) (c)

(d)

Fig. 2. Evaluation of different circuits.

TABLE II
POWER TRANSFER EFFICIENCY AND THE METHANOL PRODUCTION

(MTR, INPUT POWER = 7 W, CH4:O2 = 94 : 6, AT

ROOM TEMPERATURE AND ATMOSPHERIC PRESSURE)

Connecting a high inductance across the reactor as in circuit
3 [Fig. 2(c)] produces a slightly faster wave front compared
to circuit 2. The total power consumption increases, but the
power consumed in the reactor decreased, and the methanol
production decreased.

Circuit 4 shows a combination of resistance and a capaci-
tance as in Fig. 2(d). This circuit stabilizes the repetition rate
of the pulses better than the previous circuits, but the pulse
crest voltage decreases, thereby affecting the power transfer
efficiency and decreasing the methanol production.

Table II shows the power transfer efficiency and the
methanol production of the four circuits studied. The analysis
was carried out using the MTR at a constant input power
of 7 W. The pulse repetition rate was 250 Hz. The gas
mixture was CH O (94:6) at room temperature, with
gas residence time of 6.7 s. As seen from the table, circuit 1
[Fig. 2(a)], without any additional or , produces high
methanol output (about 0.3%) with a maximum power transfer
efficiency of 52.2%. It should be noted that a considerable
amount of methanol can also be generated using circuit 2,
which has the advantage of maintaining low dc component
in the output voltage. Circuits 3 and 4 recorded low power
transfer efficiency and, hence, can be discarded.
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Fig. 3. Waveform of voltage and current for the four circuits studied (MTR,
input power; 7 W, at room temperature and atmospheric pressure). (a) Voltage
[10 kV/div]. (b) Current [50 A/div].

Fig. 3 shows the voltage and current waveforms of the four
circuits.

Further studies on methanol synthesis were carried out using
circuit 1. The pulse rise time was about 40 ns.

For measurement of voltage and current waveforms, a
digital oscilloscope (Tektronix TDS644A), a voltage divider
(Tektronix P6015A), and a current probe (Tektronix P6021)
were used. The input power was measured by a digital power
meter (YOKOGAWA 2534) inserted at the ac power input
line. Analysis of the gas sample was carried out using gas
chromatography (GC17A, Shimadzu, Columun: G-Columun
950).

III. RESULTS AND DISCUSSION

Methanol synthesis was carried out under dynamic gas flow
condition with CH O gas mixture. CH concentration was
changed in a limited range from 94% to 98% to avoid explo-
sion. The experiments were conducted at room temperature.

Fig. 4 shows the effect of residence time on methanol
levels for the gas mixture studied. An overall high methanol
production was observed at all gas residence times for a gas
mixture ratio of 94:6. The maximum methanol concentration
reached 0.5%.

Fig. 5 shows the variation of the power transfer efficiency
as a function of the reactor input power. This result indicated
that the efficiency was almost constant at all input powers for
the CH O mixture. Fig. 6 shows the voltage, current and
power waveforms. In this case, the output voltage was main-
tained constant at 24 kV. The discharge power was calculated
by integration of the power waveform and multiplied by the
pulse frequency.

Fig. 7 shows the variation of the spark gap loss and the
discharge power as a function of the input power. The spark
gap loss was less than 1.5 W at any input power. The discharge
power can be further improved by reducing the loss in the dc
charging circuit.

An attempt was made to study the combined effect of
catalysts and electrical discharges on methanol synthesis.
An SWR was used. Four types of catalysts, WO SiO ,

Fig. 4. Methanol synthesis with CH4 + O2 (input power= 7 W, at room
temperature and atmospheric pressure).

Fig. 5. Effect of input power on power transfer efficiency in circuit 1(MTR,
CH4:O2 = 94 : 6, at room temperature and atmospheric pressure).

Fig. 6. Typical oscilolgrams of voltage, current, and power (MTR, applied
voltage= 24 kV, CH4:O2 = 96 : 4, at room temperature and atmospheric
pressure). Time scale: 200 ns/div.

MoO SiO , NiO ZnO CdO, and VO SiO ,
were subjected to the combined reaction. These catalysts
were prepared by mixing with equal proportions of catalysts
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Fig. 7. Variation of dissipated power measured at different nodes in circuit
1 (MTR, CH4:O2 = 94 : 6, at room temperature and atmospheric pressure).

Fig. 8. Combined effect of catalyts and pulse dicharge on methanol synthesis
(SWR, CH4:O2 = 96 : 4, input power= 7 W, gas residence time= 11:2

s, 120�C, atmospheric pressure).

component in powder form. Catalysts mixture ratio (wt. %)
was 50:50 for WO SiO , MoO SiO , V O SiO ,
and 30:30:40 for NiO ZnO CdO. Total weight of
catalysts was 1.5 g for all types of catalysts. The mixture
was then applied uniformly over a thin glass-fiber tube in the
form of slurry (mixed with water) and then dried at 120C
overnight. The glass-fiber tube was inserted inside the reactor
concentrically. The gas line (length: 1 m) and the reactor were
placed inside a convection oven (TABAI LC222). The system
was heated to 120C, and 30 min later, HV pulses were
applied. We measured the gas temperature at the exit of the
reactor.

Fig. 8 shows the comparison of methanol concentration with
different catalysts. Experimental conditions were as follows:
CH :O ; gas residence time s; and the input
power W. Fig. 9 corresponds to a typical GC output
without catalyst. The chart indicated the presence of CHOH,
C H , CH CHO, and CH OH. Table III shows the CH
conversion and the product selectivity for various catalyst
combinations on methanol production. The selectivity was
calculated using the area of gas chromatography and was
the ratio of the area of a product and the total area of all
products. A combination of these catalysts demonstrated both
higher methanol production (Fig. 8) and higher selectivity

Fig. 9. Gas chromatography analysis of the products on methanol synthesis
(MTR, CH4:O2 = 94 : 6, input power= 7 W, at room temperature and
atmospheric pressure, GC-FID & G-column 950, Col. temp.= 70 �C).

TABLE III
EFFECT OFCATALYST ON THE METHANOL PRODUCTION AND THE SELECTIVITY

(SWR, CH4:O2 = 94 : 6, INPUT POWER = 7 W, GAS

RESIDENCE TIME = 11:2 S, ATMOSPHERICPRESSURE)

(Table III). Conversion of CH to other hydrocarbons was
also enhanced with the use of catalysts. The catalyst of VO

SiO produced the highest methanol output of about 0.5%,
selectivity of about 38%, and CHconversion of 1.99%.

We also checked the effect of reaction temperature on the
combined reaction of catalyst and plasma discharge using
V O SiO . As shown in Fig. 8 (Type Nos. 7 and 8), no
effect of catalyst was observed when the reaction temperature
was shifted to room temperature. The behavior was different
from those without catalysts, which demonstrated no tempera-
ture effect on methanol production (Type Nos. 1 and 2 in Fig.
8). Because ordinary catalytic reaction proceeds above 300C,
this result suggests that the production of methanol attributed
to surface reaction of the catalysts is promoted by discharge
plasma. Even though the promotion effects of catalysts were
observed, the fundamental mechanism and characterization of
function of catalysts are still unknown and, therefore, further
investigations are necessary.

IV. CONCLUSION

Relative performance analysis of the reactors using pulsed
discharge plasma strongly indicates the dependence of
methanol production on the average electric field. The power
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transfer efficiency can also be improved at higher electric
field. A higher charging capacitance increases both the power
transfer efficiency and methanol production.

The combination of catalysts and pulsed discharge plasma
is effective in increasing the methanol yield and selectivity
for CH and O . The catalyst combination of VO SiO
yielded the highest methanol output (ca. 0.5%), selectivity (ca.
38%), and CH conversion (ca. 2%) from CH O , for the
range of catalysts studied.

The present value of methanol yield of the plasma process
seems very low compared to that of the commercial synthetic
process. However, this yield value was obtained in the one-
pass process. Considering that a methanol yield of a few
percent is required in one-pass in commercial plants, the
present yield by the plasma process is not too low. The
nonthermal plasma process can possibly be comparable when
the process is further improved to give a two to three times
higher yield value.
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