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Low-temperature resistance fluctuation in disordered conductors 
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Abstract. At low temperatures the electron elastic mean free path in a disordered conductor 
can become much smaller than the inelastic mean free path (or more precisely the Thouless 
length) which in turn may be comparable with, or even larger than the sample size. In this 
quantum regime, the electrical resistance is dominated by the coherence effects that eventually 
lead to the now well-known weak or strong localization. Yet another remarkable manifest- 
ation of the quantum coherence is that it makes the resistance non-additive in series and, more 
importantly, non-self averaging, thus replacing the classical Ohm's law with a quantum Ohm's 
law describing statistical fluctuations. In this paper, we report on some of our recent work on 
the statistics of these "Sinai" fluctuations of residual resistance for one and higher space 
dimensions (d). In particular we show that the physics at the mobility edge may be dominated 
by these fluctuations. We also show that an external electric field tends to harness these 
fluctuations. Some observational consequences such as l/ 'noise at low temperatures are 
discussed. Our approach is based on invariant imbedding extended by us for this purpose. 

Keywords. Disordered conductors; low-temperature resistance fluctuation; residual re- 
sistance; mobility edge; Sinai fluctuations. 
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1. Introduction 

Theoretical physics of disordered systems frequently involves a convenient artifice of 
averaging of physical quantities of interest over the probability distribution of the 
underlying quenched randomness which is assumed 'to be given. This is despite the 
fact that the experiment is performed on a given sample. The rationale for this math- 
ematical artifice is that for a macroscopic sample, i.e., in the thermodynamic limit, 
different parts of the sample may be taken as different instances of the sample. 
Thus, if the quantity of interest is extensive i.e., expressible as an integral of a local 
density over the sample volume, then the observed value is reproduced by the en- 
semble averaging which then becomes a matter of convenience. There are, however, 
quantities which are not self-averaging in the above sense. Well-known examples are 
from the statistical mechanics of disordered systems, e.g., the archetypal spin glass. 
Here the partition function and several susceptibilities are in fact not self-averag- 
ing, but the free energy is. In the following we will be concerned with the (residual) 
resistance of a disordered conductor at low temperatures which is dominated by quan- 
tum coherence effects (Kumar 1985; Kumar and Jayannavar 1986; Kumar and Mello 
1985). The latter will be shown to make the resistance non-additive and non-self 
averaging. This was already noted for the case of one-dimensional conductors 
by Mel'nikov (1980), Anderson et a1 (1980) and Abrikosov (1981): Following an 
invariant imbedding procedure, we derive an expression for the probability 
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distribution of these 'Sinai' fluctuations of resistance for d = 1. We find that variance 
exponentially dominates the resistance as the length tends to infinity, while the mean 
conductance stays infinite for all lengths due presuniably to Azbel resonance (Azbel 
f 983). We then extend the treatment to higher dimensions in a Migdal-Kadanoff bond 
moving approximation (Shapiro 1986). We find that the fluctuations dominate the 
mean value even at the mobility edge. It appears that one must consider all the 
cumulants to describe the behaviour of resistance at the mobility edge (see Al'tshuler et 
al 1986 and references therein) necessitating a deeper analysis of the one-parameter 
scaling ansatz (Abrahams et cil1979). Next, we show that an external electric field tends 
to harness these fluctuations through its delocalizing effect. Finally, we consider the l/f 
noise generated by these fluctuations at the surface of a disordered semi-infinite 
conductor. Direct experimental probing of "Sinai" fluctuations is briefly discussed at 
the end. 

2. One-dimensional disordered conductors 

Consider a one-dimensional (l-d) disordered conductor of length L, terminated at both 
ends in perfect leads. We can view the whole sample as a one-channel potential scatterer 
characterized by an amplitude reflection coefficient R(L) = I R(L)l exp(iB(L)). The 
resistance ( p )  in units of nh/e2 can then be expressed in terms of this emergent quantity 
R(L) as 

The L-dependence of R(L) can now be studied by the method of invariant imbedding 
(Kumar 1985) which directly addresses the emergent quantity. The imbedding 
equation for R(L)  is 

where h2k2/2m I E is the incident electron energy (=the Fermi energy at T= 0•‹K) and 
k(x) is the local wave number given by h2k2(x)/2m= E - V(x), and V(x) is the random 
potential assumed gaussian white noise with ( V(x)) = 0, ( V(x) V(x)') = V: G(x - x'). 

Equation (2) is a stochastic differential equation. As we are interested in the 
probability distribution Wp (p) of p(L), and therefore, W,(r) of r(L) = I R (L) I ', we have 
to go over to the associated Fokker-Planck equation for Wr(r) which is readily 
obtained as 

a wr a2 w,. a w r  
-=r(l -r)2T+(l -r) (1 - 5r) -+ 2(2r- 1) wr, dl ar dr 

where we have introduced the dimensionless length l=L/t,  (=h2E/2rnV& the 
localization length. Simple change of variable gives for W, 
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which is our central exact result, From (4), we get the moments p , r  ( p n )  by 
n~ultiplying both sides of the equation by p" and integrating by parts on the right-hand 
side, We have the first two moments 

p = (exp (21) - I), 
1 ' 

From (5) we see that for 1 $1 the 1-dependence is ohmic which is understandable as the 
cumulative effect of coherence has not built up yet. For I+ 1, the mean resistance grows 
exponentially, and variance exponentially dominates the mean indicating non- 
additivity and non-self averaging, The asymptotic form of the full probability 
distribution is ( I  $1, p $1) 

which gets broader as I-, co. Equation (6) shows that the logp (proportional to inverse 
of localization length) does obey the central limit theorem-the levelling property of 
the logarithm! 

It is interesting to examine the effect of an external electric field F, which is easily 
included by the: replacement V(.x)-+ V ( x )  - eFx. The modified probability distribution 
Wr obeys (Vijayagovindan et a1 1986) 

with 

The interesting point to note is that the distribution W: saturates to a limiting 
Poissonian form in the limit L 4 m .  Also, the mean resistance given by 

interpolates between the exponential and a power-law length dependence as the field F 
,is increased, the cross-over being at 2E/I e 1 F r  e 1. This is, of course, a manifestation of 
the field-induced wea.kening of localization (Soukoulis e t  a1 1983). 
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3. Fluctuations at the mobility edge' (D > 1) 

Our starting points is the 1-d equation (4). We assume for simplicity an anisotropic case 
where the disorder is only along the direction of the externally impressed current. 
Consider a d-dimensional hypercube bd, and ignore the bd'-I bonds transverse to the 
chosen direction of current flow (classically these bonds connect equipotential points 
and hence play no role). We now combine the b units in series along the direction of 
current flow quantum mechanically according to (4), and then combine the bd-I 
parallel chains in parallel classically (Kumar and Jayannavar 1986; Shapiro 1986). 
Thus, we get the scaling relation 

Making b a contin.uous variable then gives the evolution 

where we have introduced the characteristic function 

03 

K:) = ln So exp( - xp) W clp 

and pf" in the mean resistance of the d-dimensional system. 
It is now readily seen that (1 1) has a fixed point distribution obtained by setting the 

left hand side to zero. The associated fixed-point probability W,*" is given by a power 
law 

, with a = 2(d - 1)/(1+ 2p:(d9, Vd)= 1) 

where pt (d )  is the critical resistance (mobility edge). Thus, the mean is finite but all 
cumulants are infinite. This extreme dominance of fluctuation may be due to assumed, 
anisotropy that presumably over-emphasizes the one-dimensional character. This may 
also account for the one-parameter scaling nature of solution (12). Further analysis 
shows that even on the metallic side, pid) < p Ted), the variance remains comparable with 
the mean. 

We have attempted the general case of isotropic disorder and our results (Kumar and 
Jayannavar 1985) do not support the one-parameter scaling ansatz. 



Resistance jluctuation in disordered conductors 

4. Sinai fluctuations and 11-noise 

Yet another manifestation of these fluctuations is the 1 /$noise resulting from the 
resonant back-scattering of positive energy electrons at the interface between a semi- 
infinite disordered system and a perfect lead. The point is that the positive energy 
Anderson localized states deep inside the bulk appear as resonant states nearer the 
interface. Resonant reflection leads to energy dispersive phase shift 0 and therefore, to a 
distribution of the delay time (At). The latter results in non-cancellation of instantan- 
eous surface currents resulting from the incident and retarded reflected waves. The 
noise spectrum turns out to have the l/f character. We have derived the probability 
distribution W(z): 

with 

The long power law tails gives infinite delay time in-the-mean which corroborates with 
the fact noted earlier that the mean conductance is infinite even for infinite sample 
length. Noise spectrum for currents then turns out to be linear in frequency, giving a l/ f 
noise for charge or voltage fluctuations. 

5. Discussion 

The resistance fluctuation, its dominance over the mean and the consequent possible 
deviation from the one-parameter scaling ansatz are due ultimately to the coherence 
effects associated with the wave nature of electrons. As such we expect acoustic and 
optical analogues of these effects. A direct experimental observation of 'Sinai' 
fluctuations is, however, possible by introducing disorder coulometrically and current 
cycling the sample, keeping the net ampere-hours (charge-transferred) constant, (e.g. in 
nAg2 +, S) .  Thus, we naturally have macroscopically identical samples but differing in 
the microscopic complexions (i.e., depending on where the ions are lodged). Then, one 
would expect identical resistance at higher temperatures but a large scatter in the low- 
ternperature resistances.. 

Another interesting experiment would be to observe the time-translation of 'Sinai' 
fluctuations at non-zero temperature possible under the condition that the sample 
length be small compared to the inelastic mean free path (or better still the Thouless 
length) but the transit-time of the electron through the sample be smaller than the 
period of the dominant thermal phonon. Then, the lattice-potential modulation by 
phonons is seen only adiabatically by the electrons (no inelastic scattering) and the 
successive electrons see effectively different realizations of the random potential giving 
an excess noise. We could call this scintillation noise somewhat after the twinkling of 
stars. 
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