
n the study of complex systems one 
maybe faced with experimental data col- 

lected on the variables without knowing 
much about the way in which these vari- 
ables interact. The parts of such a complex 
system interact in a norisimple way [l]. 
Wolfram [ 2 ]  found that there exists a com- 
plex dynamic state which may be even 
more complex than chaotic motions. 
Complex systems have: been found to 
have an underlying deterministic model 
and exhibit chaotic dynamics in some 
cases, epilepsy in particular [3]. The use 
of quantitative measures for the analysis 
of these systems has helped gain better in- 
sight into system dynamics. In this article 
we apply Ziv-Lempel i:LZ) complexity 
and approximate entropy (ApEn) as 
measures to quantify the regularity in the 
various epochs of epileptic seizure time- 
series data. 

Analyzing Complex Systems 
Nonlinear dynamics has been one of 

the most popular approaches for analyz- 
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ing complex systems. However, applica- 
tion to neuronal processes is under criti- 
cism where the EEG signal may be 
considered to have a simpler stochastic 
description, and chaotic dynamic meas- 
ures can turn out to be spurious and unnec- 
essary. The EEG signal has been found to 
be both nonstationary and high dimen- 
sional, and the calculation of quantities 
such as dimensions is not strictly accurate 
and has meaning only in a comparative 
sense [4]. Validity of surrogate data test- 
ing for low-dimensional chaos has also 
been questioned [51. 
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Some popular invariants that have 
been used to characterize the regularity of 
the systems have been the correlation di- 
mension (D2) and the Lyapunov exponent 
(LE). Correlation dimension gives us an 
idea about the minimal dimension that the 
state space should have in order to recon- 
strnct the strange attractor. The traditional 
Grassberger-Procaccia algorithm [6] as- 
sumes the time series to be stationary and 
noise free. However, these assumptions 
are not generally true. The stationarity 
constraints imposed on the time-series 
data results in the reduction of the scaling 
region, making the calculation of D2 error 
prone. The estimation of LEs, which 
quantifies the long-term average rate of 
exponential growth of small perturbations 
to initial conditions [7 ] ,  is very sensitive 
to noise. The numerical effort required to 
extract its spectrum is quite large. 

Since computational complexity of 
these algorithms is also high, one should 
be very clear whether it is necessary to ap- 
ply these algorithms to the problem con- 
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1. (a) Time series made of standard maps in the order mentioned in the article; (b) 
time series made of alpha, beta, theta, and delta waves in the order mentioned in the 
article; (c) time series of an epileptic seizure (y-axis: magnitude, x - axis: samples). 
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2. (a) The variation of Ziv-Lempel complexity for the time series made of well- 
known maps (y-axis: magnitude of the LZ cornpllexity, x-axis: samples); (b) the 
variation of the approximate entropy for the time series made of well-known maps 
(y-axis: magnitude of the ApEn measure, x-axis: samples). The x-axis starts from 
1000 because we need 1000 samples for the first window to find the complexity. 

cerned or is there an alternate easier way. 
New methods for EEG analysis hold 
promise, and limited progress has been 
made in finding new methods for diagno- 
sis [4]. The method of symbolic dynam- 
ics, an algebraic approach that originated 
from abstract topological theory of dy- 
namical systems, has been successfully 
applied to one-dimensional maps [8,9]. It 
was also carried out successfully for the 
multicomponent Belousov-Zhabotinskiis 
reaction [lo]. 

In this article, we do not to argue for 
the existence of chaos or estimate the 
regularity by finding the invariants of the 
epileptic seizure time-series data, but use 
alternate complexity measures to quantify 
the regularity embedded in the time series. 
Epileptic seizures represent a pathologi- 
cal state of brain activity, characterized by 
synchronous discharge of large groups of 
neurons. In particular, we have studied 
electroconvulsive (ECT) therapy-induced 
seizures. We are concerned with general- 
ized epilepsy, where the EEG activity 
during the seizure is found to switch into 
an apparent oscillating mode, with a suc- 
cession of more or less regular and ex- 
tremely coherent waves. We have used 
two mathematically well-established 
measures, namely LZ complexity and 
ApEn, as relative indices to quantify the 
regularity of this time-series data. Other 
measures of complexity can also be ap- 
plied for analysis [2, 111. 

The algorithmic complexity, c(n) ,  for 
sequences of finite length was suggested 
by Ziv and Lempel [ 121. It is related to the 
number of distinct substrings and the rate 
of their recurrence along the given se- 
quence. c(n)  reflects the order that is re- 
tained in the sequence. In this work, we 
have coded the time series as a binary se- 
quence and then evaluated its LZ com- 
plexity. It has been shown that LZ  
complexity can be a finer measure than 
the LE for characterizing order [ 131. 

The ApEn can classify complex sys- 
tems given at least 1000 data values in di- 
verse settings, both deterministic chaotic 
and stochastic processes. The capability 
to discern changing complexity from such 
a relatively small amount of data holds 
promise for application of ApEn to a vari- 
ety of contexts [14]. We shall consider 
three time series data: (1) the artificial 
time series data made of well-known 
maps with tunable parameters; (2) the 
time series made up of a sequence of nor- 
mal waves; alpha, beta, theta, delta; and 
(3) the EEG time-series data obtained 

90 IEEE ENGINEERING IN  MEDICINE AND BIOLOGY Moy/June 1998 



from patients who received ECT. We 
compute the variation of the above-men- 
tioned complexity measures as we run 
through the series, thus iestablishing the 
effectiveness of these measures. The sei- 
zure data under consideration consists of 
transients in the initial stages, so we ex- 
pect the series to be more complex in this 
stage. Regularity sets in the series as the 
seizure progresses, which indicates a re- 
duction in complexity in a comparative 
sense. Transients are observed again at the 
end of the series. 

Algorithmic Complexity- 
An Overvie!w 

The probabilistic interpretation of dis- 
tinguishing sequences may turn out to be 
singularly unhelpful, failing to give any 
information about the order embedded in 
the sequence. One such example is given 
below. The first ideas in the field of algo- 
rithmic complexity were introduced by 
Kolmogorov [ 151 and Chaitin [ 161. Algo- 
rithmic complexity is defined as the 
length in bits of the shortest algorithm re- 
quired by a computer to produce the given 
string. The shortest algorithms are re- 
ferred to as minimal prog,rams. The com- 
plexity of a string is thus the length, in 
bits, of the minimal progr,im necessary to 
produce that string. 

In the case of a random string, the al- 
gorithmic complexity is found to be 
equal to the length of the string. In other 
words, a random string cannot be com- 
pressed to a more compalzt form; any at- 
tempt  to do so would resul t  in 
information loss. It can allso be seen that a 
system fails to characterize a sequence 
appropriately if the sequence has as 
much information as the system itself. 
Consider the two binary sequences (A), 
(B) of length n = 16, where (A) has been 
chosen purposely to be a periodic pattern 
and (B) is chosen seemingly random: 

(A) 0 10 10 10 10 10 10 10 1 

(B) 0001 101001000101 

The probability of the occiirrence of string 
(A) and string (B) are the same. 

Ziv-Lempel Complexity (LZ) 
We first introduce sorne basic defini- 

tions: 
A: Alphabet of symbols (for a binary 

sequence we have two symbols, namely 0 
&L 1) 

s: finite-length sequences formed by A, 
s = sl s2 ... sn where si E A 

v(s): vocabulary of sequence s; it the 
set of all substrings of s 

s7c: number of elements in the set s mi- 
nus one 
i.e, ifA = { 0, 1 } and s = 010 then v(s) = { 0, 
1,01, 10, O l O }  andv(s7c) = (0, 1,011. 

An absolute measure for complexity is 
believed to be nonexistent. However, 
complexity of a finite sequence is evalu- 
ated from the point of view of a simple 
self-delimiting learning machine that, as it 
scans a sequence from left to right, adds a 
new word to its memory every time it dis- 
covers a substring of consecutive digits 
not previously encountered. The first 
symbol is always inserted and the proce- 
dure is iterated. The size of the compiled 
vocabulary and the rate at which new 
words are encountered along s serve as the 
basic ingredient in the proposed evalua- 
tion of the complexity of s. 

Let us assume that a given string, sl 
s2 ... sn, has been reconstructed by the pro- 
gram up to the digit sr, and sr has been 
newly inserted. The string up to s r  will be 
denoted by s = sl s2. . . sr., where the dot 
(after sr) denotes that sr is newly inserted 
in order to check whether the rest of the 
string sr+l . . . sn can be reconstructed by 
simple copying. First, we take q = sr+l 
and see whether p = sq is reproducible 

from s. If the answer is “no” then we insert 
q = sr+l into the sequence followed by a 
dot. Thus, it could not be obtained by 
copying. If the answer is “yes,” then no 
new symbol is needed and we proceed 
with q = sr+l sr+2 and carry out the same 
procedure. The LZ complexity is the 
number of dots (plus one if the string is not 
terminated by a dot).We shall not go into 
the details of the mathematical proofs of 
this measure. but we do consider the tw 
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3. (a) The variation of Ziv-Lempel complexity for the time series made up of nor- 
mally occurring brain waves (y-axis: magnitude of the LZ complexity, x-axis sam- 
ples); (b) the variation of the approximate entropy for the time series made up of 
normally occurring brain waves (y-axis: magnitude of the ApEn measure, x-axis: 
samples). 
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4. (a) The variation of Ziv-Lempel complexity for the seizure time-series data (y- 
axis: magnitude of the LZ complexity, x-axis: samples); (b) the variation of the ap- 
proximate entropy for the seizure time-series data (y-axis: magnitude of the ApEn 
measure, x-axis: samples). 

strings mentioned above and find their LZ 
complexity. 

0101010101010101 

We state here that only relative values 
of c(s) are meaningful. We compare c(s) 

c o n s i d e r  sequence  (A): of astring withrespecttoarandomstring 
of the same length. For a random string 
the complexity measure b(n) is defined as: 

0 

s = 0; q = 1; sq = 0l; 

s =  01; q =  o s q =  010; 

W n ) =  (An) /  ( k , P )  
where v(sq.rr: 1 = (0) > 4 e! v(sqn 1 

v(sqn 1 = {OJ} ; q E v(sqn: ) 

h = the normalized source entropy. 
k = number of elements in the alphabet 

A. 
Proceeding this way, we get the parsed se- 
quence as 0.1.01010101010101, c(s) = 
2+1=3 

Consider  s equence  (B) :  
0001101001000101 

0 
s =  0; q = 0; sq = 00; 

s = 0; q = 00; sq = 000; 

s =  0; q = 001; sq = 0001; 

v(sqn) = (0); 4 E v(sqn:) 

v(sg7.t) = {0,00}; q E v(sq7.t) 

v(sq7c) = {0,1,00,000}; q 6 v(sq7c) 

Proceeding this way, we get the parsed se- 
quence as 0.001.10.100.1000.101, c(s) = 
5+1=6 

k 

h = -c pi log(pi)/ log k 
,=I 

let 

y = Lt c(s)/ b ( n )  
r e  - 

i.e., we have normalized c (s )  with respect 
to b(n) ,  where b ( n )  gives the asymptotic 
behavior of c(s). Consider a sequence 
generated from a random source having k 
states, where "pi" is the probability of 
finding the state, i. If the probability pi < 
l/k, then we expect its complexity to be 
less than that of a random string with pi = 
Ilk. It should be noted that the source en- 
tropy is maximum atpi = l lk .  This implies 
that one can find out whether the deviation 
of ''y" from unity is either due to the fact 

the source entropy differs from unity or is 
due to pattern formation in the sequence. 

Approximate Entropy 
Measure (ApEn) 

Approximate entropy measure [ 141 
can classify complex systems. Its ability 
to quantify with a limited amount of data 
points and to distinguish between multi- 
ple periodic systems is to be noted. It has 
been found [ 141 that invariant measures 
can arise from deterministic as well as sto- 
chastic settings, and it is in generally not 
valid to infer the presence of an underly- 
ing deterministic system from the conver- 
gence algorithms designed to encapsulate 
properties of invariant measures. The 
ApEn has also been used to quantify se- 
quential irregularity applied to both finite- 
and infinite-length sequences, and thus 
identify maximally irregular sequences 
[17]. Below we discuss the estimation of 
the ApEn in brief; for a detailed discus- 
sion please see [ 141. 

Fix m, a positive integer, and r, a posi- 
tive real number. If the given time series is 
of the form u(l),u(2) ,...., u ( N ) ,  we form 
vectors x(l), ...., x(N - m+ 1)in R"' where 

x(i)= [u(i) ,u(i+l)  ,..., u(i+m-l)]. 

We define for each i,l I i I N - m f  1 
This procedure is known as embedding. 

Cz!(r) = (number o f j  such that 

d[x( i ) , x ( j ) ]  I r )  / N - m + 1) 

We define d[x(i),x(j)] for vectors x ( i )  
andx(j). We follow [18], by defining 

d[x(i),x(j)] = max 
k = I , Z ,  ..., m 

(Iu(i + k - 1)- u ( j +  k - 1)l) 

@"'(r)  = 1/ (N - m+ 1) ClogC:(r) 

Define 
/"-",+I 

i= I 

ApEn(m,r) = N + -  lim[@"'(y)- @"+'(r)] 

ApEn(m,r,N) = @"'(u)- $""'(Y) 

Methods and Materials 
Electroconvulsive therapy was admin- 

istered to chronically depressed patients 
after obtaining proper consent. Treat- 
ments were given under intravenous anes- 
thesia using thiopentone (3 mg/kg), 
succinylcholine (0.5 mgkg), and atropine 
(1.2 mg). Patients were ventilated with 
100% oxygen after the injections and 
throughout the seizures, until they re- 
sumed spontaneous respiration. Stimulus 
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was applied either bifi-onto-temporally 
(BL) or unilaterally (UL:l on the right side. 
The ECT instrument delivered 800 mA 
constant current pulses of 1.5 ms with al- 
ternating polarity, at a rate of 12.5 Hz. 

EEG Data Acquisition 
The EEG was recorded on two chan- 

nels, from left and right frontal regions 
(F3 and F4), referenced to ipsilateral mas- 
toids, with a ground on the forehead. The 
electrode impedance was c 10 kQ. The 
EEG was amplified by a factor of 1000 
with analog filter settings of 1.6 Hz (high 
pass), 35 Hz (low pass), and 50 Hz 
(notch). Square wave pulses of 100 pV 
were used for calibration. The EEG was 
acquired for 200 s following the end of 
stimulation. The EEG WiiS digitized using 
a 12-bit A/D converter at the rate of 128 
Hz per channel, using Labtech Notebook, 
and the data were stored for off-line analy- 
sis. The data were reaiewed and arti- 
fact-free segments were chosen from each 
channel (right and left) Each segment 
was low-pass filtered (30 Hz), using an 
FIR linear-phase digital filter of 80th or- 
der. All simulations were run on a Sparc 
Ultra Workstation and the graphs were 
plotted with the Matlab program. 

Simulation Results 
We have Considered three time-se- 

ries data and have quantified the regu- 
larity in them with overlapping segments. 

The window length was fixed at 1000 
samples, with an overlap of 200 samples, 
and the parameters for the ApEn were rn 
=2, Y = O.1SD). We coded the series 
about the mean by a binary sequence in 
the calculation of LZ complexity. The 
binary sequence consisted of two 
states, zero and one (choice of higher 
number of states was also possible). 
The plots for each of the cases under 
consideration are self explanatory. 

Case 1 

x(n + 1) = m(n)( l -  x ( n ) )  

Logistic map is given by: 

Henon map is given by: 

~ ( n + l ) = p y ( n ) + 1 - 1 . 4 ~ ( n ) ~  
y ( n  + 1) = 0.3Px(n) 

where a, fl are the map parameters. We 
shall denote the logistic map with parame- 
ter a as Z(a) and the henon map with pa- 
rameter p as h@). 

In Fig. l(a), we have considered a time 
series of 5000 samples formed by stan- 
dard maps. The series consists of Z(3.95), 
h(1.0), Z(3.5), h(0.8), Z(3.56) of 1000 sam- 
ples each in that order. Z(3.93, h(l.O), 
h(0.8) are chaotic series, whereas 43 .5 )  is 
of period 4 and Z(3.56) is of period 8. The 
hierarchy of the decreasing regularity is in 
the order of 1(3.5), Z(3.56), h(1.0), h(0.8), 
l(3.95). In Fig. 2(a), we see the variation 
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5. (a) Distribution of the LZ complexity values shown in Fig. 4(a). (b) Distribution of 
the ApEn values obtained in Fig. 4(b). 

of the LZ complexity. In Fig. 2(b), we see 
the variation of the ApEn as we run the 
window through the series. Both of these 
figures are in accordance with the 
above-mentioned hierarchy. 

Case 2 
In Fig.(lb), we consider a series of 

4000 samples composed of alpha, theta, 
beta, and delta waves of 1000 samples 
each, in that order. Alpha waves have fre- 
quency range of 8-15 Hz and they occur 
over the occipital lobes in the awake, 
mentally relaxed state, with the eyes 
closed. Beta waves have a range 1.5-30 Hz 
and they occur over the parietal and fron- 
tal lobes. Theta waves have a range of 4-7 
Hz and they occur in adults during sleep 
and in children. Delta waves contain all 
the EEG activity below 4 Hz and occur 
during deep sleep, in premature babies, 
and in infants. The hierarchy of de- 
creasing regularity is in the order delta, 
theta, alpha, beta. We can see the varia- 
tion LZ complexity in Fig. 3(a) and of 
the ApEn in Fig. 3b as we move through 
the series. This is in accordance with 
the noted hierarchy. 

Case 3 
We have used the complexity meas- 

ures to quantify the regularity embedded 
in the seizure time-series data as the sei- 
zure progresses. The epileptic seizure 
time-series data has transients at the be- 
ginning and at the end. The seizure be- 
comes more regular and coherent in the 
middle part. The seizure data considered 
is shown in Fig. l(c). In Fig. 4(a), we see 
the value of LZ complexity falling gradu- 
ally as the seizure progresses. The same is 
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demonstrated by the ApEn in Fig. 4(b). 
We see the complexity more or less pla- 
teaus in the mid-seizure range. We have 
also plotted the distribution of the LZ 
measures in Fig. 5(a) and ApEn in Fig. 
5(b). The frequency distribution gives us 
an idea about the relative occurence of the 
complexity values and the segment range 
where these values occur. 

Conclusion 
We have demonstrated the potential of 

complexity measures such as LZ and 
ApEn in quantifying the regularity at dif- 
ferent epochs of epileptic seizure time-se- 
ries data. It is clearly shown that these 
measures have high values at the begin- 
ning and the end of the seizure, and that 
they decrease during mid-seizure. In fact, 
we observe in the histogram plot that the 
frequency of the complexity measure in 
mid-seizure is quite prominent. This gives 
us an idea about the epoch where we can 
find more regular patterns. These meas- 
ures can also be used as relative indices 
(comparing across state), rather than ab- 
solute indices, by using a larger number of 
subjects to obtain statistical validity in 
comparing across conditions. 

The analysis of time series obtained 
from complex systems, such as the brain, 
by the above measures provides an alter- 
native easy way to quantify the regularity 
with finite-length segments (of the order 
of 1000 samples). The same can be in- 
ferred by calculating the D2 and LE, but 
the algorithms used to estimate these in- 
variants are susceptible to error due to the 
finite sample size and are also highly sen- 
sitive to noise. The computational com- 
plexity of these algorithms is also high. 
We have also applied these measures 
across the various states of epilepsy (the 
details of which will be discussed in a 
later article). 
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