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Bose condensation of particle-antiparticle systems
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Abstract. We discuss some important papers that have appeared in the last twenty years on
the possibility of Bose condensation in particle-antiparticle systems. Electron-hole systems in
some semiconductors provide the background for a non-relativistic treatment. Bose condensa-
tion and the superfluid phase of the electron-hole fluid are strongly favoured. Next, pairing and
the appearance of the superfluid vacuum state in fermion-antifermion system are considered
from a relativistic viewpoint. Special attention is given to the pairs in the state JP =0% The
pairing in the fundamental fermion-antifermion sea may provide the background subquantal
level of reality of the universe.
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1. Introduction

In the present paper we discuss some important developments that have taken place in
the last twenty years concerning Bose condensation in particle-antiparticle systems.
First we consider a non-relativistic situation which occurs in a solid, namely interacting
electron-hole system in a semiconductor. Next, we discuss the relativistic treatment of
particle-antiparticle pairing. This is important in the context of the nature of the
vacuum state in field theory and the subquantal level of reality of the universe (Sinha et
al 1976; Vigier 1980).

In solids the system comprises conduction (c) band electrons and valence (v) band
holes. These electron-hole systems can be produced in solids where ¢ and v bands
overlap (indirect gap) or generated by optical pumping (direct band gap systems). The
former has been the subject of study of electron-hole (e — h) pairing leading to excitonic
insulators and the latter to electron-hole droplet condensation (actually seen exper-
imentally) and the possibility of Bose condensation and superfluidity (Kjeldysh and
Kopaev 1965; des Cloizeaux 1965; Jerome et al 1967; Comte and Nozieres 1982;
Nozieres and Comte 1982).

2. Electron-hole system in solids

Consider a single pair of e-h system in a direct gap semiconductor with m, = m,. They
form a bound state (exciton) of energy —&o and radius dq. In the regime m, =m,
formation of biexcitons can be ignored. Let us define the number of electrons (N.) and
holes (N,), which satisfy N, = N,, = N. One has to examine the density regimes of
excitons from Na3 < 1 (dilute)to Na3 > 1 (dense) where excitons overlap and one must
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take account of the two fermions that constitute the bosons (Comte and Nozieres
1982). Ignoring spin for a while, the exciton creation operator can be defined as

Vex = Zdrai b, (1)

where a; is the electron creation operator in the ¢ band and b;" for the v band. A
Kjeldysh type wave function for N Bose-condensed excitons or electron-hole pairs is
given by

|®9 ) = exp (49 ) |vac) 2)

= M exp(2ai” by)|vac )

=II(1+Ad.ai by) |vac ).

This is a special case of Bardeen-Cooper-Schrieffer (BCS 1957) like ansatz
|®2> = I;I[u,,+v,,a,:“bk]|vac>, (3)
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For a dilute exciton gas u; ~ 1 and v, > A¢, < 1. With increasing N (pair density) |oe|?
increases and is stopped at the value 1. This is a reflection of the normalization
condition u} + v? = 1and in effect takes care of the exclusion principle in that electrons
and holes are fermions. Physically this implies that the N exciton states exhaust the
underlying fermion states leading to saturation of v, when Naj ~ 1 and excitons start
overlapping.

In the dense limit also (Naj > 1), the Bcs ansatz adequately describes the degenerate
electron-hole plasma. Now we have taken |,|? as a step function

lof= {1 k<
"Tl0 itk > kg,

)

where k » = (6n2N)' /3 (ignoring spin). Thus in an isotropic e-h plasma we get e-h pairing
analogous to BCS pairing in electron fluid. We have Bose condensation at all densities—
dilute exciton gas—excitonic insulator—e-h plasma.

For computing the gap function one can use scs type extended meanfield
approximation with (a*b) anomalous pairing and {(a*a, (bb* >, Hartree-Fock
pairing. Explicit solution is possible in the high density Na3 > 1 limit. For unscreened
coulomb interaction the gap turns out to be (Comte and Nozieres 1982).

A =E exp[—1/(4ne* No/3k})1 2], (5

where E, is the energy cut-off of the order of Fermi energy Er and N, the density of
states at the Fermi level. This shows that the gap vanishes exponentially when N — (kp
= (6m>N)'/3), Thus A for N — 0 starts from a vanishing value and passes through a
maximum at some critical value N, and then falls off.

The ground state possesses collective excitations, bound quasiparticle pairs or
fluctuations of th¢ order parameters {a* b).In the dilute limit excitations are phonons
and rotons of the Bose system and in the dense limit it will sustain Bogoliubov modes
in the gap. Quantitative calculation of the critical temperature 7, at which Bose
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condensation disappears is not possible as the Kjeldysh function does not allow a
§mooth description of T, through the whole density range. Qualitatively, for large N, T;
is exponentially small and of the order of A. In the limit N — 0,7, ~ N?/3.In betweer; Tc
should go through a maximum, which is a pure conjecture. :

A spin-dependent formulation of the electron-hole system inclusive of screening and
band structure effects have been considered by Nozieres and Comte (1982). For spin 1/2
particles the wave function can be written as

l\PO > = exp[z’laa’ d)ka;bkd’] |vac) E] (6)

where 1 is a 2 x 2 complex matrix and fixes the spin state. The choice

A—lov'lt d,{—l 0\ ..
=\o 1 (singlet) and A = 0 -1 (triplet S, = 0)

corresponds to factorization of the ground state wavefunction
|Wo > = A1 A4, |vac). (7

In this representation 71 and || pairs condense separately, with decoupled order
parameters. The ground state energy is a sum E o1 + E, of non-interacting mixture. Ih a
fully polarized state electrons and holes each have single spin states characterized by two
directions n, and ny. If they are parallel, the total state is triplet, otherwise we have a
mixture. For arbitrary polarization, one will have N; and N, independent groups.
Under mean field approximation, the ground state energy

Eo= N{E(V/N)+N2E(V/N3). (8)

In fact, spin polarization of excitons is equivalent to liquid-gas separation.
Qualitatively, the energy as a function of density of the various spin states is as follows:

In the dilute limit triplets T, and T; are close together and well separated from singlet
S. In the high density S and T, are very close and T, lies higher up.

Screening corrections in the framework of random phase approximations lead to an
approximate form of Van der Waal attraction between excitons. Calculations are
possible only in the dilute and dense regimes. For the latter the polarizability behaviour
is the same as a normal plasma.

Intermediate density region is formidable and one can at best make primitive
conjectures. Complications in band structure go against the Bose condensation. If'the
degeneracies of conduction and valence bands are different, we will have a normal
plasma state. Thus the fermi surfaces must match and the degeneracies of the two bands
should be the same for Bose condensation.

Instead of pairing of electrons and holes, one can have pairing of excitons also if an
attractive interaction between these exists and excitons are fairly longlived. Exciton-
phonon can provide the necessary attractive interaction. The equation for the gap
parameter A, turns out to be (Nandakumaran and Sinha 1975)

(1-2n) B(1 —2n)Ey
A,‘=§Vex(k—k) T Ak,coth[_—————z ] )

where n is the exciton density, Ve, (k — k') the effective interaction between excitons and
E? = e2—|A,[% & being the exciton energy relative to its chemical potential. The
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excitation has the form
o = (1 =-2n)[T(T+2|AD]* (10)

where 7, is a redefined kinetic energy. Since T; — 0 as k — 0, we get a phonon-like
spectrum for small values of k which signifies a superfluid phase for the excitons.

Recently Vignale and Singwi (1985) have explored the possibility of superconduc-
tivity in electron-hole liquid. The mediating bosons responsible for pairing of the
electrons are correlated pair excitations from the Fermi sea of holes. They estimate
T.~ 1K.

3. Fermion-antifermion sea

Let us consider now superfluidity in a sea of fundamental fermions and anti-fermions.
The Hamiltonian of this fundamental “sea” (Sinha et al 1976; Sinha and Sudarshan
1978) is given by

H = zskclta- Cho. +Eskdltd+dka'+
'—Egr(k: k’)dlt'a_ d;—k’,o+ dqv—k,o,,ckd_! (11)

where o _ denotes the spin of fermion, ¢, that of anti-fermion and we have taken &f’
= ¢{® = ¢, for single particle energy; g, (k, k') is the fundamental interaction between
fermions and anti-fermions (creation operators cg,_, di, , etc respectively). For singlet
spin pair we will have S(= 1/2(c+ + ¢-)) zero and for triplet unity. Also for the orbital
states of the pairs the allowed angular momentum values are L =0, 1, 2, etc.
Accordingly the various allowed states for the pair are 1S, 3§, 1Py, 3Py, etc. For
singlet pairing the quasiparticle energy E, turns out to be

E2 =2 +|AO} (12)

and for triplet with all the three components equally populated, the isotropic energy
spectrum is

E} =&} +|ADP, (13)

where A®’s are the two by two gap matrices. On the face, these results look similar to
non-relativistic Bcs type theory. However it can be shown that a relativistic treatment
gives almost identical expressions. We follow the method described by Bailin and Love
(1984). Let ¥ (x) be a relativistic fermion field with ¥ (x) its charge conjugate field. The
free spinor field is described by the Lagrangian

L tree = W (i9'8, —mo)¥ + u¥y° Y, (14)

where m, is the bare mass and y the chemical potential at finite density; y’s are the usual
Dirac matrices. For present purposes, we ignore internal degrees of freedom (e.g.,
isospin, colour, etc). Then for a pair of fermion and antifermion in state J* = 0%, the gap
matrix will have the explicit form

AQY = Ays+Anyyoys +Aszyos. (15)

We have considered a homogeneous superfluid and thus the gap matrix in momentum
space depends on a single momentum variable. The form selected above depends only



. e _._————«-f—‘,%, -

13

Bose condensation of particle-antiparticle systems 471

on the dlrtcction n (unit vector) and not on the magnitude of wave vector. The
components A;, A, and A3 depend on the models taken for exchange producing

paitring. It is possible to obtain a model independent form by taking a trace to project
out.

A=A _PEp T
1 N 42 " A3: (16)

where p; is the Fermi momentum. One gets the Bcs-like integral equation for gap

1 2 ‘
AQ = ) N(g)a 1A Jl 3 de(e? +AO*AO)~1/2tanh g (82 + AO*AO)/2,
(17
where ¢, is the energy cut-off and N (g) is the density of states and

1, [dQ [d ,
4 =169 |an %‘Du(nyﬂ)

: Xﬂ{(?s'*‘%“")’?o?s"‘%)f‘ (18)

m
X (75+—*PF ﬂ'?)’o?s“"‘o)ra},
p p

where D, is the propagator for the exchanged boson, (igT'4) appears at the interaction
vertex; I'4 takes care of internal symmetry if any. Note that integration is over angle
variables Q and Q.

Equation (17) is solved at T'=0, i.e. to give the gap as

|A©|,_o = 2&o exp[— (§N(e)a; )" ]. (19)
The critical temperature T, is obtained for |A®]— 0. One finds
1-14¢
T.=——exp[ —(}N@a:) 7] 20)
B

Both (19) and (20) have the same structure as the non-relativistic Bcs case. The superfluid
sea of fundamental fermion-antifermion fields forms the background (non-empty)
vacuum of the observable universe. Various Bose-like excitations, scalars, vectors and
tensors are composites of these fundamental matter and become the vehicles of
observed forces in nature. These fundamental fermions also lead to other composites,
nucleons, atoms, etc and hence the rest of the material world. The pair J* = 0%, may be
identified with Higgs-like particles. Finally, even the geometry (the metric describing
space-time) may be built out of this fundamental fermionic matter (Akama 1978). This
scheme is called “pregeometry”—the vacuum of the fundamental matter (preonic
matter!). ,

Considerable work is still needed before one can have a unified picture of space, time

and matter.




