Sadhand, Vol. 23, Part 1, February 1998, pp. 29—43. © Printed in India.

Region-of-interest reconstruction from noisy projections
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Abstract. In this paper, we present a method for region-of-interest (ROI)
tomography using noisy projections. A wavelet decomposition down to the
coarsestlevel is done on the noisy signal. The signal at various levels is estimated
using a Wiener filter. By assuming that the projections are 1/f processes, the
Wiener filtering reduces to a scalar multiplication. Using the Wiener filter and
regularity property of the wavelets, we combine the estimation and localisation
of the noisy projections for ROI imaging. Experimental results are shown on
Shepp-Logan phantom and actual CT images. The validity of the 1/f model
for projections of real life images is also shown.

Keywords. Region-of-interest reconstruction; noisy projection; fractal mod-
els; Wiener filtering.

1. Introduction

In computer-aided tomography, the objective is to reconstruct the cross-section of an object
from measurements that are strip integrals of some property of the object. In transmission
X-ray tomography, the measurements consist of integrals (projections) of the attenuation
coefficient uu(x, y) of the object along strips which represent the path of the X-rays through
the object. A popular technique for image reconstruction is the Filtered Back Projection
(FBP) (Kak & Roberts 1986).

In this work, we are concerned with the problem of reconstructing a portion of the
image from noisy projections. The discussions in this paper are restricted to parallel beam
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tomography. Reconstruction of only a portion of the cross-section being imaged (region-
of-interest tomography or local tomography) leads to reduction in the radiation exposure
to the patient and savings in computation (compared to FBP of the entire object).

However, the problem of local tomography is complicated by the fact that it is not
uniquely solvable in even dimensions (Natterer 1986). Most of medical imaging is con-
ducted in 2-D and the reconstruction formula becomes globally dependent on the line-
integrals of the object. Using wavelets is one method of solving this problem.

The FBP algorithm does not produce satisfactory reconstruction with noisy projections.
The work reported here combines the ideas of multiresolution analysis and multiscale
estimate of the projections using wavelets. We use a 1/f model for the projections and a
Wiener filter for the estimation. It is further shown that this algorithm can be extended to
case of ROI tomography.

2. Preliminaries
2.1 Radon transform and its inversion

The two-dimensional Radon transform,! £(r, ), of a function Flx,y) e %2 alongaline
parameterized by (r, 8) such that r = x cos 8 + y sin 6 is defined as (Kak & Roberts 1986)

f(r,0) :ﬁzf(x,y)é(r —xcosf — ysinf)dxdy. )
R

The one-dimensional function f (r, §) is termed as the projection of f(x, y) at the angle
6. The back-projection operator denoted as B is defined as (Kak & Roberts 1986)

hp(x, y) = Bh(r, £) =/Onh(xc030+ysin6’,§)d9. | o)

Then it can be shown that
fx,y) = BF || Ft(r, 6)]. 3)

Equation (3) is the filtered back-projection implementation of the inverse Radon trans-
form. It means that we filter each projection by a |w| filter and then backproject the filtered
projections.

2.1a  Nonlocality of the Radon inversion: The Radon inversion formula can be repre-
sented as follows (Olsen 1996):

d
fx,y) =R, 0) = BH, —£(r,6), )
where H, is the Hilbert transform operator defined as

1 1
Hl’f(rve):;f(rve)*; (5)

"'We denote the Radon transform and Fourier transform operators by R and F respectively.
29t represents the set of real numbers.
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The Hilbert transform imposes a discontinuity on the Fourier transform of any function
whose average value is not zero and also discontinuities on the higher derivatives which
are not zero at the origin (Olsen 1996). This is because

FHFG) =F (f(t) * ;l;) = -:— sign(w) F (w). (6)

Because of the discontinuities in the frequency domain, there is a spreading of the support
of the function in the time domain (Olsen & DeStefano, 1994). However, this spreading
of the function’s support will not occur if the function’s Fourier transform and the higher
derivatives of it are zero at the origin (Olsen & DeStefano, 1994). If the Fourier transform or
higher derivatives of it have zeroes at the origin, it implies that the function has a number
of zero moments. Hence functions with arbitrarily high zero moments will have their
support unchanged by the Hilbert transform. It is in this context that the wavelet transform
is used. Wavelets are usually constructed with many zero moments (Daubechies 1988).
Thus local properties of the high resolution components of a wavelet transform remain
local after applying the Hilbert transform. It has been shown in (Olsen & DeStefano, 1994;
Delany & Bresler, 1995) that using wavelets which have several zero moments, the wavelet
transformed filtered functions will have essential compact support.

2.2 Wavelets

2.2a Continuous wavelet transform of 1-D signals: The continuous wavelet transform
Wy (f)(a, b) of a signal f(¢) is defined as (Chui 1992):

WeH@b) = [ a2 £y w (=2 )ar, Q
where a € R, b € ®3 are the dilation _and translation, respectively, of a single wavelet
function v (¢) called the mother wavelet. y denotes complex conjugation. A very important
property for wavelets is the regularity, which means the smoothness of the wavelet function.
Regularity R of the mother wavelet v (¢) is defined as (Aldroubi, 1996):

+00
[ rvoa=o, ®)
-0
where r is an integer such that 0 < r < R.
Thus a mother wavelet with regularity R has R — 1 vanishing moments or W () (Fourier
transform of ¥ (¢)) has a zero of order R at origin, because (Chui 1992):
+00 A"V (w)
f Y@y dr = () )

—00 do” w=0

= 0. %)

It can be shown that a Daubechies’ wavelet of length 2L has regularity R = L (Daubechies
1988).

3% and %t represent the set of real numbers and the set of positive real numbers respectively
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23 Multiresolution analysis (MRA)

Given a function f, it is possible to obtain the low resolution signal, ), and dU), at 4
scale j in the following manner (Daubechies 1992):

f(j)(k) = (h() * f(j“*'l)(Zk)) (10)
and
dD (k) = (g() *aY+D 2ky), (11)

where * represents 1-D convolution. A apd g are two filters associated with MRA. The
finer scale approximation coefficients f/*1(l) can be synthesized from the next coarser
scale approximation and detail coefficients, ) and d(), as

FIUEy =Y "h@n - fPm) + Y g2n - k)dD (n) (12)
where / and g are defined as ﬁ(n) = h(—n) and g(n) = g(~n).
24 1/f processes

A 1/f process is a nonstationary random process with a power spectral density (PSD)

o2
S() = +—, (13
T | )
where ¢ is a constant and y is known as the spectral exponent.
It can be shown that (Wornell & Oppenheim 1992)
p=25-1, (14)

where D is known as the fractal dimension. If we choose gamma such that 1 < Yy <3,
then I < D < 2. Hence fractal dimension of the signal is not an integer, but a real number
which lies in (1, 2) and the signal is self-similar. This type of signals (1-D random process)
are known as fractal signals. Here we concentrate on fractal signals and take 1 <y <3.

2.5 Statistical properties of discrete wavelet transform coefficients

From the regularity condition of the mother wavelet, W (w), the Fourier transform of (1),
has a zero of order R at the origin of the frequency plane. It ensures processing of the signal
with mother wavelet essentially removes the low frequency components and we obtain the
detail coefficients. These detail coefficients again are wide-sense stationary (WSS) process,
even when the signal is non-stationary (Masry 1993). This shows that non-stationarity is
concentrated around zero frequency. In our analysis, we have assumed our signal to be
stationary. However, in case of any non-stationarity present in the signal, wavelet filtering
will effectively remove it. Consequently, processing with only detail signals turns out to
be simpler than processing the original signal itself, We have adopted this method in our
work.
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Figure 1. ACF of highest level detail coefficients with (a) Haar wavelet, (b) with
Daubechies’ wavelet.

DWT not only makes detail signals WSS but almost decorrelates them also. Correlation
structure of detail coefficients can be obtained by calculating autocorrelation at a given
scale and over scale to scale. Denoting detail coefficients at scale m (resolution level 2m)
as d , where m and n are the dilation and translation indicies respectively, it can be shown
that (Barman 1997)

Eld-dl] ~ 0( 2k — 2" o =R-D, (15)

This equation gives the correlation across scales, as well as at a particular scale. Conse-
quently, with higher regularity mother wavelets it is possible to achieve fast decay of cor-
relation coefficients. This property is illustrated in figure 2.5. Furthermore, it can be shown
that the detail coefficients are mutually uncorrelated and their variance decreases geomet-
rically with scale m and at each scale the variance, oom, can be expressed as (Wornell 1993)

02 = 0227V, (16)

3. Wiener filtering

Here we assume that the original signal itself is a Gaussian process and corrupted by
an independent additive white Gaussian noise (WGN). Clearly Wiener filtering gives an
optimal estimate of the uncorrupted signal since it minimises the mean square error in the
Gaussian case. Instead of doing Wiener filtering directly on the signal itself, we decompose
it into its detail signals at various scales (starting from the highest scale) using wavelet
decomposition and do Wiener filtering on these detail signals only. Here we exploit the fact
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that wavelet decomposition whitens the 1/ f process. Complexity of estimation process i
greatly reduced by adopting this technique (Wornell & Oppenheim 1992).

Letr,", wy and x!" be the detail coefficients of the corrupt signal, additive WGN anc
the original uncorrupt signal at a scale m (level 2"™). Hence, r* = Xy 4w, We will be
doing Wiener filtering at each scale and the problem is to find out a filter with impulse
response Ay’ so that for the input r the output will be an optimal estimate of xp,". Denoting

by X" the optimal estimate of x,* we have,

~+00 +00

am m m _ m m _ myim

Xp =1y *hn = Z rn—~khk - Z Tk hn—-k’ {7
k=—00 k=—00

~where x denotes linear convolution.
The optimal filter impulse response hy' at a given scale m is given by

2n0—m
o°p .
hm 8 ,
oM 4 o2 [n] (18)

where o and 8 are signal parameters, or,% is the variance of the WGN, B=2"and o is
defined by the equation azz,n = 02277" where 022,,, is the variance of the detail coefficients
at resolution m,

From the above equation we see that Wiener filter reduces to a scalar multiplication,
Here Wiener filtering is done only on detail coefficients because for a 1 /f signal most
of the energy is concentrated at low frequencies and consequently least affected by the
additive white Gaussian noise.

4. ROI reconstruction

We now consider the problem of ROI reconstruction when the initial projections are noisy.
It is shown that projections at a different angles can be considered as fractal signals, with
different values of .

Data Collection: The non-locality property of Radon transform does not permit ROI
reconstruction from projections only over that region. It requires line integrals beyond
ROI. However, projections can be taken for the entire object (which is to be reconstructed
at a coarse resolution) at a low number of angles and the values of the projections for
the missing angles interpolated suitably (Olsen & DeStefano 1994). Over the ROI, pro-
jections at an increased number of angles are taken. A comprehensive explanation of the
data collection strategy can be found in (Delany & Bresler 1995; Olsen & DeStefano
1994).

The 1/f model and filtering: In many applications, the projections will be noisy and
a conventional FBP will give poor results. In this algorithm, Wiener filtering is used
to remove the noise. The filtering algorithm requires a prior model for the data to be
estimated. Analysis of a typical projection data shows that it is a fractal signal. Figure
2 shows the plot of the variance of the detail coefficients at various resolutions of a few
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Figure 2. A few typical projection data and their approximation to the fractal model; —
actual variance of detail coeficients. against scale; —— straight-line fit.
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Figure 3. Continucus line shows PSD of a 1/f signal and the dashed line gives a least
squares fit. Estimation of fractal dimension becomes poorer with decrease in SNR.
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typical projections against the resolution on a log-log graph. The linear trend in the dat:
in self-evident.

The Wiener filtering process involves decomposition of the signal to the level where
the length of the signal corresponds to the filter length. As an example, if a 5th order
Daubechies filter is used the signal length at the lowest level will be ten. This may involve
padding the signal with suitable number of zeros so that the signal length is equal to filzer
length x 2% where k is an integer, denoting the resolution level. It means that if we have
a signal of length 256, we zero-pad it upto 320. At level 5, the signal length will be ten,
the filter length. The reconstructed signal, after an inverse wavelet transform, is an optimal
estimate of the original signal.

Estimating fractal signal parameters: Maximum likelihood (ML) estimation method for
fractal signals was introduced by Wornell & Oppenheim (1992). In this method wavelet
decomposition technique is used as a tool and wavelet filter banks not only (almost)
decorrelate the 1/f signal but provide a power law variance structure for detail signals
also (figure 3). Here it is assumed that the original 1/f signal has been corrupted by an
additive white Gaussian noise and we estimate fractal dimension from the corrupted signal
using Wornell-Oppenheim ML estimation algorithm (Wornell & Oppenbeim 1992).

4.1  Algorithm for ROI reconstruction

Figure 4 outlines the entire filtering and reconstruction process for a simple example. It
should be noted that the diagram is simply for the purpose of explanation. The values
shown do not reflect the values we used in our simulation. Note that the full exposure
projections are sparsely sampled in the angular variable. In the block diagram, there are
N/2 full exposure projections and N/2 reduced exposure projections. This effectively
means that there are N projections over the ROI and N /2 away from it. The algorithm is
explained in the steps below.

(1) A wavelet decomposition is done on each full exposure projection till signal length is
equal to filter length. The detail coefficients are estimated using the Wiener filter. By
adding only the detail coefficients corresponding to the projections over the RO, we
obtain the estimate of the projections over the entire object.

(2) A wavelet decomposition is done on the reduced exposure projections. These are at in-
termediary angles and of smaller length. At the lowest possible resolution, their length
is equal to the filter length. The low resolution coefficients of these projections are not
processed as they are not localised. Thus before doing a wavelet synthesis on these
reduced exposure detail coefficients, we must obtain the low resolution coefficients
for these angles.

(3) To obtain the low resolution coefficients for the intermediary angles, we perform an
interpolation in the angular variable. The interpolation requires the low resolution
data. This is obtained from the synthesis portion of the full exposure projections (see
figure 4). The data at the proper scale must be taken. Once we obtain the low resolution
coefficients at the intermediate values, we can do the inverse wavelet transform on
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. Figure 4. Simple schematic of the algorithm (the values are simply for the purpose of
explanation; they do not reflect the values used in simulations), showing the wavelet decom-
position, Wiener filtering and wavelet synthesis. Numerals denote signal lengths at various
points. 4 and g are of length 10.

them, using the detail coefficients available for the ROI. Note that the detail coefficients
for a particular resolution will be smaller in length than the low resolution coefficients,
as the former is obtained only for the ROIL. Thus the addition of the detail coefficients
must be only over the ROL

(4) The projection data for all the angles is now obtained, with the detail information
added only to the ROL

(5) FBP of the result obtained in step (4) results in an object reconstruction which has a
high resolution over the ROI and a low resolution elsewhere.

By stopping the synthesis of wavelet coefficients at a particular scale, we can obtain
images at various resolutions. This can also be done sequentially, and the radiologist can
view the image at finer and finer resolutions.

5. Experimental results and comments

The effectiveness of our algorithm is shown by reconstructing the Shepp-Logan phantom
image as specified in standard medical imaging literature (Kak & Roberts 1986) and actual
CT scan images. The image size is 128 x 128 in all the cases. The projections are taken
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at 128 angles for all the images. Over the ROI the number of projections is doubled. Each
projection of the phantom image consists of 128 parallel rays while each projection of the
actual CT images consist of 193 (approx. 128+/2) rays. The ROI is defined to lie at the
centre and approximately covers 1/4th of the image. The ROI can be shifted to some other
part by a change of co-ordinates. We have used Daubechies’ wavelets of length 10 (A is of
length 10) (Daubechies 1992).

In figure 5j, the image is reconstructed from the full projection data at 128 angles with-
out any noise. The effect of noise on the data when no estimation techniques are used
is shown in figure 5a, d and g, for 15, 10 and 5dB. The result of using the filter with
the Daubechies wavelet is shown in figure 5b, e and h. It is apparent that noise has been
effectively removed. The smoothing of the edges can be explained by looking at the corre-
sponding projection. A typical projection and the output after filtering is shown in figure 6.
The high frequency details of the projections are removed as the filtering is unable to
differentiate the high frequency signal from the noise. For purposes of comparison, we
also reconstructed using the Haar basis. The presence of circular rings can be accounted
by studying the corresponding reconstructed projection. The estimated projection con-
tains sharp edges. On back-projection, the sharp edges lead to rings in the image. The
sharp edges in the estimation using the Haar wavelet is because of several factors. The
estimation process assumes that the wavelet coefficients are decorrelated from scale to
scale. Figure 1 shows the autocorrelation function with both the Haar and Daubechies’
wavelets. The decorrelation in the second case is greater than in the first. Thus our as-
sumption is more correctly adhered to in the second case. As has been shown before, the
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(a) (b)

Figure8. Reconstruction of the images from noisy projections at 15 dB SNR. The columns
(a, b, ¢) show the original image, noisy image and noise removed image respectively. The
rows correspond to images A, B, C respectively.

5.1 How good is the 1/ f model?

The entire algorithm described thus far hinges on the assumption that the projection of
the image at each angle is a fractal signal. To test our assumption, we considered a few
actual medical images obtained from medical texts. Here we show the results on three of
the images we collected (figure 8). We refer to the images as A, B and C.

(A) CT scan of the large frontal lobe.

(B) Frontal CT scan in the investigation of the cortical areas (frontal, temporal, parietal),
sellar, parasellar and third ventricle region.

(C) abdominal scan.

Figure 9 shows the linear trend in the detail coefficients across scales. The next two
figures show the noise removal and reconstruction using this fractal model. The results
obtained are certainly encouraging and strongly proves the fact that fractal model for
medical image projections is a viable assumption.
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