A brief overview of the Western Ghats – Sri Lanka biodiversity hotspot


1Department of Environmental Biology, Curtin University of Technology, GPO Box U1987, Perth WA 6845, Australia
2Department of Botany, Scott Christian College, Nagercoil 629 003, India
3Department of Botany, University of Peradeniya, Peradeniya, Sri Lanka
4Institut Français de Pondichéry, P.B. 33, Puducherry 605 001, India
5Department of Ecology and Environmental Sciences, Pondicherry University, Kalapet, Puducherry 605 014, India
6IT Power-India, 6 & 8, Romain Rolland Street, Puducherry 605 001, India
7Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India

The Western Ghats of India and Sri Lanka biodiversity hotspot is often regarded as one unit because of shared biogeographical history. However, recent studies suggest that certain faunal components, particularly in the wet zones are distinct. This article looks at the existing information on species richness and endemism of taxa in both regions. Data are available on some taxa but not on others, and many taxa have not received equal attention in both regions. The natural ecosystems of this hotspot are under threat and urgent conservation action is needed, especially in augmenting the protected area network. There is also the need for increasing the level of scientific collaboration in biodiversity studies between the two countries.

Keywords: Biodiversity hotspot, deforestation, species endemism, protected areas, Sri Lanka, Western Ghats.

There is an ongoing global biodiversity crisis due to unprecedented loss of natural ecosystems1,2. The most recent publication of the IUCN Red List of Threatened Species has reported that 39% of listed species are threatened with extinction3. Others estimate that by 2050, up to 350 bird species will become extinct2. Therefore, the conservation of global biodiversity is an important priority, equivalent to facing the challenges of climate change.

Over 50% of the Earth’s species are confined to the tropical latitudes, where poverty and population pressure put tremendous demands on natural ecosystems. Even within the tropics, some regions have higher levels of biodiversity and endemism and need to be prioritized for conservation. Therefore, the concept of biodiversity hotspots was first put forward by Myers4 and the Western Ghats of India and Sri Lanka (Figure 1) were included among the first 18 global biodiversity hotspots due to high levels of species endemism. The list of biodiversity hotspots5 has now increased to 34 reflecting a severe threat to biodiversity5.

For example, in the Western Ghats/Sri Lanka (WG/SL) biodiversity hotspot, forest loss has been so rapid that out of the original extent of 182,500 km² of primary vegetation only 12,450 km² (i.e. 6.8%) remains6. There are high levels of topographic and climatic heterogeneity in the Western Ghats and Sri Lanka, which support diverse vegetation types and distinct fauna. However, the wet zone of Sri Lanka has a wetter and more aseasonal climate7. The wet evergreen forests of the Western Ghats and Sri Lanka have distinctive faunas and numerous species form endemic clades whereas the fauna and flora of lowland dry forests seem more similar8. This is probably because contiguities between the wet zones over the ice ages might have been

*For correspondence. (e-mail: n.gunawardene@postgrad.curtin.edu.au)
lower than between the dry zones. However, further comparative studies are needed to give a clearer picture of patterns of similarity and divergence between floristic and faunal assemblages.

Flora

Plant diversity in the Western Ghats is correlated with seasonality, with higher levels of alpha diversity towards the south9,10. Similarly plant endemism is also higher towards the southern region11, as in the wet zone of southwestern Sri Lanka12. Montane cloud forests, locally called shola, and grassland ecosystems are found in the higher elevations of the Western Ghats and Sri Lanka, but comparative studies are lacking. The grassland ecosystems of the higher elevation of the Western Ghats have been fairly well studied, and shown to be primary and not of anthropogenic origin13,14. The disjunct distribution of the genus Eriochrysis further indicates the relict nature of some of the floral elements. The recently rediscovered Eriochrysis rangachari, is an endemic swamp grass used extensively by the Toda ethnic group, inhabitants of the grasslands15. However, further studies need to be conducted to understand the biogeographical history of equivalent vegetation types of the Western Ghats and Sri Lanka. A breakdown of the species richness and endemcity of different plant and animal groups is presented in Table 1.

Evergreen tree endemism (≥10 cm dbh) is about 56% along the Western Ghats18 with tree communities tending to vary in relation to the local topography within the wet zones of the Western Ghats9. The wet zone area of Sri Lanka represents less than one quarter of the island’s land mass and yet harbours 95% of the endemic angiosperm flora of the country17. In Sri Lanka, 98% of the tree species in the Dipterocarpaceae family are endemic to the island; this is the highest degree of endemcity for this group in the south and south-east Asian region18. The two main genera in this family, Dipterocarpus and Shorea, have a higher species richness in Sri Lanka compared with the Western Ghats19,20. Amongst flowering plants in the WG/SL hot-spot, 10% (4679 species) are under the IUCN ‘threatened’ category21.

The bryophyte diversity of the Western Ghats is high with about 850–1000 species7 (Table 1). Of these, 682 are mosses, 190 of which are endemic including one endemic genus Nanothecium22. Among the 280 species of liverworts and 14 species of hornworts, there are 121 and two endemic species respectively23. Endemism appears to be higher in the Western Ghats ranges that lie south of the Palghat Gap7, a 30-km wide break in the Western Ghats that separates the south from the more northern stretch. The bryophyte diversity of Sri Lanka includes 568 species of mosses (63 endemic species), and approximately 250 species of liverworts and hornworts (Table 1). A collection in the uplands of Sri Lanka in 2002 revealed five

### Table 1. A comparison of species richness and endemcity in the Western Ghats (WG) and Sri Lanka (SL)

<table>
<thead>
<tr>
<th>Taxon</th>
<th>WG (endemism %)</th>
<th>SL (endemism %)</th>
<th>Remarks</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosses</td>
<td>682</td>
<td>568</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Liverworts</td>
<td>280</td>
<td>250</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Evergreen trees (≥10 cm dbh)</td>
<td>645</td>
<td>211</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>Lianas</td>
<td>11-Nilgiris</td>
<td>10</td>
<td>40</td>
<td>D. Mohandass (WG – unpublished), 12</td>
</tr>
<tr>
<td></td>
<td>13-Palnis</td>
<td>300</td>
<td>SL-Sinharaja plot</td>
<td>WG – A. Narendra. pers. commun. SL – N. R. Gunawardene, unpublished data</td>
</tr>
<tr>
<td>Ants</td>
<td>~350</td>
<td>~300</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Odonates</td>
<td>174</td>
<td>120</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Butterflies</td>
<td>330</td>
<td>243</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Molluscs</td>
<td>269</td>
<td>246</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Fish (freshwater)</td>
<td>288</td>
<td>82</td>
<td>54</td>
<td>Threatened-41% WG species SL: 9 spp. globally &amp; 39 spp. nationally</td>
</tr>
<tr>
<td>Amphibians</td>
<td>~219</td>
<td>103+ (~88+)</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td>225</td>
<td>183</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td>500+</td>
<td>482</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Mammals</td>
<td>120</td>
<td>91</td>
<td>18</td>
<td>Threatened 14/18 endemic species</td>
</tr>
</tbody>
</table>
new species of mosses, suggesting that further investigation into less accessible montane ecosystems may yield additional new species. Snails: Malacological studies in the Western Ghats and Sri Lanka also show high diversity and endemism. Raheem has recorded about 247 species of land snails from Sri Lanka, out of which 83% are known to be endemic to the region. She also recorded 23 new species of land-molluscs, including six new species of *Cyathopoma* and a new endemic genus *Ratnadvipia*. About 269 species belonging to 56 genera of land-snails have been recorded from the Western Ghats, of which 76% were endemic. Mollusces, with their tendency to be highly localized in their distribution as compared with other taxa, are more vulnerable to extinction due to their sensitivity to habitat modification.

**Invertebrates**

**Snails:** Malacological studies in the Western Ghats and Sri Lanka also show high diversity and endemism. Raheem has recorded about 247 species of land snails from Sri Lanka, out of which 83% are known to be endemic to the region. She also recorded 23 new species of land-molluscs, including six new species of *Cyathopoma* and a new endemic genus *Ratnadvipia*. About 269 species belonging to 56 genera of land-snails have been recorded from the Western Ghats, of which 76% were endemic. Mollusces, with their tendency to be highly localized in their distribution as compared with other taxa, are more vulnerable to extinction due to their sensitivity to habitat modification.

**Ants:** Ants can constitute up to 20% of the animal biomass in tropical forest and play essential roles in ecosystem functioning. While there have been a few studies of ants in the Western Ghats, the study of ant communities in Sri Lanka is still in its infancy. Currently, there is a push to document the ant fauna of Sri Lanka. Historical records documented about 210 species of ant in 65 genera and 12 subfamilies for Sri Lanka, including the endemic relict ant *Aneuretus simoni* Emery. A recent study conducted in dipterocarp-dominated forest of the Sinharaja Biosphere Reserve recorded 173 species of ground-dwelling ants in 54 genera and 11 subfamilies (N. R. Gunawardene, unpublished data). In comparison, Gadagkar et al. collected 140 species in 32 genera from 12 localities in the Western Ghats. Comparative studies between the Western Ghats and Sri Lankan ant faunas are necessary to assess the degree of diversity and endemism in the region.

**Dragonflies and damselflies:** The odonate fauna of the Western Ghats and Sri Lanka includes 223 species representing two sub-orders: dragonflies and damselflies. About 52% of the species belonging to these sub-orders are endemic. Generally, there are more endemics amongst the damselflies although the proportion might vary locally with the habitat heterogeneity. The families Gomphidae and Platystictidae have high levels of endemism within the region. The families Gomphidae, Cordulidae and Protoneuridae are very diverse in the Western Ghats, while the families Libellulidae and Platystictidae are the most diverse in Sri Lanka. Sixty-eight per cent of the species of odonates in the region use riparian habitats and 46% are restricted to that habitat. Many genera and species are restricted to one or two river catchments and isolation and poor dispersal may have driven local diversification. This may partly explain why despite the considerable difference in the size between the wet zones of Western Ghats and Sri Lanka, the level of endemism in the odonate fauna is comparable. Sri Lanka, being a well-watered tropical island with a relatively aseasonal climate, offers a wide range of aquatic habitats for the local diversification of its odonate fauna.

**Vertebrates**

**Fishes:** Data on freshwater fishes of the Western Ghats are limited. Dahanukar et al. estimated a species richness of 345 species, whereas 288 species have been recorded, of which 118 (41%) are endemic. An analysis of distributional patterns shows that southern Western Ghats are more species-rich than the northern and central regions. A number of new species have also been recorded from southern and central Western Ghats. In Sri Lanka, 82 species of freshwater dispersant fish have been recorded. Forty-four of these are endemic to the island with the majority having restricted ranges in the wet zone. During the past ten years, nine new species have been discovered in this area, which incidentally, is also the most heavily populated region of the country. Loss of freshwater habitats, introduction of exotic species and pollution of water bodies pose the most serious threats to fish populations.

**Amphibians and reptiles:** Amphibians and reptiles have the highest level of endemism among vertebrates in the WG/SL hotspot. Both regions are known to be a mega-hotspot for reptilian fauna, having over 50% endemic species and a number of these endemic species being in the IUCN ‘threatened’ category.

The amphibian diversity of the wet zone in Sri Lanka is remarkable; it has the highest species density (approx. 3.9 species per 1000 km²) compared to eight other ‘mega-diversity’ countries in the world. Studies done thus far also indicate that many of the ancient amphibian lineages are confined to the Western Ghats and Sri Lanka. The Old World tree frog family Rhacophoridae represents up...
to 85% of anuran fauna in Sri Lanka, the highest compared to any other region in the world. Alarmingly, about 19 species of amphibians have already gone extinct in the past two decades in Sri Lanka44.

In the Western Ghats, the family Ranidae (true frogs) has the highest number of species (42% of total species) followed by Rhacophoridae (25%). The two genera *Nectibatrachus* (11 species) and *Micrixalus* (seven species) are known to be endemic to the Western Ghats. As a whole, both regions have more species of terrestrial and arboreal amphibians than aquatic ones46.

Recently, a spectacular new species of frog, the purple frog (*Nasikabatrachus sahyadrensis*) has been discovered in the southern Western Ghats. It represents a new genus of frog *Nasikabatrachus* of an ancient Indo-Madagascan lineage; recent studies show that the frog belongs to an already known family Euglossidae47. The caecilian diversity in the Western Ghats is also quite high, supporting 16 out 20 species known in India and all of them endemic to the Western Ghats46,48.

A total of 225 and 183 species of reptiles have been recorded from the Western Ghats and Sri Lanka respectively29,49 (Gowri Shankar, pers. commun). There are several intriguing similarities in reptilian fauna. For example, the family Uropeltidae consists of primitive burrowing snake species and is restricted to mountain ranges of Southern India; the 12 Sri Lankan species all endemic to the island, occur in similar climatic conditions as that of the Western Ghats. In Sri Lanka six endemic genera (16 species) of Sauria and three endemic genera (nine species) of Serpents are considered geographically relicts29.

**Birds:** Species richness and endemism of birds in the Western Ghats and Sri Lanka are similar. Western Ghats has about 500 species of birds of which 22 are endemic (4%), and of the 483 species described in Sri Lanka, 33 (6.8%) are endemic29,50–53. Many endemic species such as the Nilgiri wood pigeon (*Columba elphinstonii*), Nilgiri pipit, *Anthus nilghirienis* white-bellied shortwing (*Brachypteryx major*) from the Western Ghats and the Sri Lanka wood pigeon (*Columba torringtoni*), the green-billed coucal (*Centropus chlororhynchus*), the Sri Lanka white-headed starling (*Sturnus senex*), Sri Lanka blue magpie (*Cissa ornata*) and ashby-headed babbler (*Garrulax cinereifrons*) from Sri Lanka are also known to be endangered and rare54. Changes in the land use throughout the Western Ghats have triggered the decline in endemic bird diversity and seven of the 22 endemic bird species are globally threatened55,56.

**Mammals:** Currently, about 120 species of mammals have been recorded from Western Ghats and 92 in Sri Lanka. Endemism is quite low when compared to other taxa with only 18 endemics in both regions7,57, though 14 of them are in the IUCN ‘threatened’ category58. With increasing forest loss and fragmentation, some endemic species like Nilgiri tahr (*Hemitragus hylocrius*), lion-tailed macaque (*Macaca silenus*) and Malabar civet (*Viverra civettina*) from the Western Ghats and purple-faced leaf monkey (*Trachypithecus vetulus*) and red slender loris (*Loris tardigradus*) from Sri Lanka have declined in number and have been added to IUCN ‘vulnerable’ and ‘endangered’ categories17,29.

**Protected areas**

The percentage of area under protection is higher in Sri Lanka (25.6%) than in the Western Ghats (9%) (Table 2). The protected areas of the Western Ghats have more often been demarcated using *ad hoc* criteria, and many of the critical habitats such as lowland dipterocarp dominated evergreen forests and *Myristica* swamps are not adequately represented in the network11,59. Of the 9473 km² of forest area recorded in the windward slopes of the southern Western Ghats in Kerala, only 49% were primary forests and the remaining were disturbed, secondary or degraded16. An analysis of 40,000 km² areas covering three Western Ghats states (Karnataka, Kerala and Tamil Nadu) showed a loss of 25.6% forest cover from 1973 to 1995 (ref. 60). In the central Western Ghats state of Karnataka alone, forest loss over a 20-year period (1977 to 1997) was about 12% (of 3.2 million ha) with an annual rate of loss of about 0.63%. Especially in coffee belt areas (e.g. Kodagu), land under coffee cultivation has doubled during this period at the expense of already fragmented forests, including sacred groves61.

Of 58 protected areas surveyed in the Western Ghats, it was found that hunting, timber felling, presence of exotics and invasive species, extraction of firewood/fodder, livestock grazing and fire were the most proximate threats to biodiversity62.

In Sri Lanka, natural forest covered 44% of the country in 1956, this dropped to 27% by 1980 and during the last decade 1.5% of that was further lost due to land conversion63,64. Total forest cover in Sri Lanka remains at about 25% of its land area. Tropical rainforest is found

---

**Table 2.** Area and percentage of protected areas in both regions

<table>
<thead>
<tr>
<th></th>
<th>Western Ghats</th>
<th>Sri Lanka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total area (km²)</td>
<td>160,000</td>
<td>65,610</td>
</tr>
<tr>
<td>% protected area</td>
<td>9%</td>
<td>26.5%</td>
</tr>
</tbody>
</table>

**Number of protected areas**

<table>
<thead>
<tr>
<th>Category</th>
<th>Western Ghats</th>
<th>Sri Lanka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict Nature Reserves (SNR)</td>
<td>Nil</td>
<td>03</td>
</tr>
<tr>
<td>National Parks (NP)</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>Nature Reserve (NR)</td>
<td>Nil</td>
<td>04</td>
</tr>
<tr>
<td>Sanctuaries</td>
<td>68</td>
<td>56</td>
</tr>
<tr>
<td>Biosphere reserve</td>
<td>01</td>
<td>04</td>
</tr>
<tr>
<td>Forest dept conservation forests</td>
<td>Nil</td>
<td>53</td>
</tr>
</tbody>
</table>

*http://web.biodiversityhotspots.org/XP/Spot\texts/ghats/conservation.xml
**http://earthtrends.wri.org
only in the southwest quarter of the country. Currently less than 5% of the original rainforest cover remains in the form of about 140 fragments. Even as recently as 2004, due to lack of management and protection, state forests adjacent to relic forest fragments were converted to cardamom and tea plantations, causing further isolation of these harbours of diversity. The rate of loss of forest and wildlife habitats in Sri Lanka is considered one of the highest in South Asia. As forests have been lost or degraded in this region, many species have been driven to critical status, there is an urgent need to take immediate steps to conserve the unique biodiversity of the Western Ghats and Sri Lanka.

Conclusion

The Western Ghats and Sri Lanka have similar levels of endemism among taxa, though the fauna of the wet zone have been found to be quite distinctive. Trees, bryophytes, odonates, land snails, reptiles and amphibians show higher levels of endemicity than butterflies, birds and mammals. Therefore dispersal ability and habitat specialization could be related to levels of endemism among taxa. More comparative studies need to be conducted between India and Sri Lanka on equivalent vegetation types and taxa in order to understand the evolutionary history of the biota.

SPECIAL SECTION: ASIAN BIODIVERSITY CRISIS


59. Ramesh, B. R. and Swaminathan, M., A reassessment of forest biodiversity in the Western Ghats of Karnataka, India. Final report on a three years project conducted in collaboration with the Karnataka Forest Department. Funded by the Fonds Français de l’Environnement Mondial 1999, 132pp, 16 maps.

60. Critical Ecosystem Partnership fund. Western Ghats and Sri Lanka Biodiversity hotspot–Western Ghats region, 2007; Available online [www.cepf.net]


ACKNOWLEDGEMENTS. This paper resulted from the symposium chaired by Dr Ranjit Daniels on the Western Ghats and Sri Lanka biodiversity hotspot at the conference of the Asian chapter of ATBC. We are extremely appreciative of the efforts of Dr Daniels in outlining the major themes of this paper. Dr Lalitha Vijayan helped to put together information on birds. We thank Dr Egbert Leigh Jr. and Dr Peter Ashton for critical comments on the manuscript. Many thanks go to Dr Priya Davidar for all her work in editing the manuscript and for providing administrative support for the authors.