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Abstract. Formulation of appropriate governing equations, simpler than 
the three-dimensional equations of elasticity yet capable of predicting, 
fairly accurately, all important response parameters such as stress and 
strain, is attempted in modelling a structural component. Several theoret- 
ical models are available in the literature for the analyses of plates. The 
emergence of fibre-reinforced plastics as an  attractive form of structural 
construction, added a new complexity to the modelling considerations of 
laminates by requiring the estimation of the interlaminar stresses and 
strains. In this paper, modelling considerations of laminated composite 
plates are discussed. The classical laminated plate theory and higher-order 
shear deformation models are reviewed to bring out their interlaminar 
stress predictive capabilities, and some new modelling possibilities are 
indicated. 
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I. Introduction 

In general one may define a structure as a material system intended to carry loads, and 
the structural element as its component. Structural elements are usually categorized for 
convenience into beams, plates, shells, plane problems etc. depending upon the 
geometry and loading pattern. The set of equations, whose solution can be interpreted 
to get response parameters such as stresses and strains, describing the behaviour of the 
structural element is referred to here as the theoretical model or simply the model. If 
rigour is the only criterion, the three-dimensional elasticity model is the only valid 
formulation for all these categories of problems. The complexity of three-dimensional 
equations, defying the possibility of any reasonable solution for a large class of practical 
problems, motivated the search for simpler sets of equations, each applicable for a 
particular structural element and capable of yielding all important response para- 
meters reasonably accurately. Such solutions will naturally not coincide with the three- 
dimensional solution in all details. The aim is to formulate these simpler sets of 
equations such that they yield results as close to the solution of the three-dimensional 
equations of elasticity as possible. Simplicity and accuracy, although contradictory, 
have been the favourite objectives in shaping theoretical models. Identification and 
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incorporation of appropriate assumptions, reflecting the physical behaviour of a 
structural element, into the three-dimensional theory guided the development of 
theoretical models. The simple assumption of Kirchhoff, that normals to the 
midsurface of a plate before deformation will remain normal even after deformation, 
brought about far-reaching simplicity in the model and shaped the plate theory. 

In what follows, we will be concerned mainly with modelling of plates. Within the 
frame work of the three-dimensional theory of elasticity, a plate subjected to transverse 
loading requires the solution of three simultaneous partial differential equations or its 
equivalent along with appropriate boundary conditions. On the other hand the 
classical plate model, based om Kirchhoff's assumption predicts plate behaviour fairly 
accurately as the solution of the biharmonic equation in normal deflection with 
appropriate boundary conditions. As a consequence of the simplification, some 
inconsistencies arise. Some of them are 

(i) transverse shear and normal strains are zero, 
(ii) constitutive law is violated, 
(iii) there is no provision for adequate description of boundary conditions at edges, 
(iv) there is no provision for considering boundary conditions on plate surfaces. 

Recognizing the importance of the transverse shear strain in thick plates, shear 
deformation theories with provision for non-zero transverse shear strain were 
developed to extend the theory to thick plates (Reissner 1944; Mindlin 1951). The 
problem of providing adequate description of the boundary conditions at edges is 
resolved, once the shear strains are accomodated. Unfortunately there appears to be no 
general way to model plates satisfying plate surface boundary conditions. Krishna 
Murty (1977), Levinson (1980), Krishna Murty & Vellaichamy (1988a) attempt to 
model the plates satisfying the zero transverse shear strain conditions at plate surface 
andvijaya Kumar & Krishna Murty (1988a) examine the modelling of plates satisfying 
the normal stress condition at the plate surface also, using the Lagrangian multipliers. 
These typical developments in modelling isotropic plates provide a basis for modelling 
laminated plates. 

The advent of composites as the most attractive engineering material system, forced a 
fresh look at the modelling considerations of laminates. In these materials the 
interlaminar zone is the weakest link as it is essentially a thin layer of homogeneous 
resin medium. The estimation of interlaminar stresses and strains has became essential 
in ensuring laminate integrity. Thus a fresh look at the plate theory, becomes necessary 
to expose the interlaminar stress predictive capabilities of existing models and, if 
required, to remodel the laminates. 

We shall restrict our further discussion to the modelling of fibre-reinforced plastic 
laminates. Modern fibre-reinforced plastic materials are essentially bundles of fibres 
embedded in resin. The fibre strength is very high compared to the resin. Diameters of 
the fibres are of the order of microns. When prepreg material is used to build structural 
components, which is perhaps the most popular method of building composite 
laminates currently, we have layers or plies of unidirectional fibres embedded in resin, 
in a partially polymerized form. A number of such plies are put together to obtain the 
necessary thickness and are cured under controlled temperature and pressure 
conditions to build the structural components. Therefore, it is necessary to fix up the 
type of abstraction for modelling the laminates. Two levels are readily apparent. In 
order to consider localized details such as the stress field around a fibre, fibre matrix 
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I L,T,t = Materialaxes 

Figure 1. A typical laminate - its geometry and coordinates, 

interactions etc., no simplifications are possible and full elasticity equations are the 
obvious choice. On the other hand, by restricting the attention to certain gross aspects, 
such as ply and interlaminar strength, one may consider the laminate as a number of 
layers of an orthotropic homogeneous medium, perfectly bonded at the surfaces such 
that no slip is possible. Here we consider the second abstraction, and generally, as is 
well-known, this kind of abstraction provides valuable information of direct use in 
engineering applications, in assessing the strength, stiffness and vibrational behaviour 
of laminates. 

A typical laminate is shown in figure 1. A look at some of the exact solutions available 
(Pagano 1970), will reveal the special complexity in modelling laminates. Unlike metals, 
laminates contain interfaces across which the material constants are discontinuous in 
the direction of thickness. As a consequence, some of the strain and stress components 
are discontinuous across the interface, as indicated in table 1. 

We shall refer to (E,, E, and E,) and (ux, a,, u,,) as in-plane strains and stresses, 
respectively and (6, E,, E,,) and (5, o,, and a,,) as transverse strains and stresses, 
respectively. It may be noted here that in-plane strains are continuous across the 
interface while the corresponding stresses are discontinuous. Similarly transverse 
stresses are continuous across the interface while the corresponding strains are 
discontinuous across the interface. Generally it is difficult to achieve this feature in pure 
displacement- or stress-based models. We will see later that in the iterative model 
described later this feature has been realized. 

Recognizing that the formulation of the governing equations of a structural element 

Table 1. Nature of stress and strain components 
across the interfaces. . 

Continuous E, E, cXy 6, c,, a,,, 

Discontinuous a, a a,, E, E,, eZy 
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has a basis in the energy principles, it may be noted that the approach for modelling is 
essentially the Kantorovich form of the Rayleigh-Ritz method. Two classical 

I 

approaches will be readily evident. In the first one the displacement is expressed in a 
series form in the thicknesswise or z-coordinate, leaving the rest in a functional form, 
and the governing equations are established retaining a few appropriate terms. We 
shall call such models here 'the displacement-based models7. The second approach 
treats stresses as primary variables. Soni & Pagano (1988) discuss an interesting new 
model based on this approach in this volume and the present discussion will be 
limited to displacement models. 

2. Displacement-based models 

The procedure consists of expanding the displacements in terms of the thicknesswise 
coordinate as, 

Retaining a few terms and utilizing the energy principle or direct equilibrium 
considerations, the governing equations and boundary conditions are established 
(Reissner & Stavsky 1961; Dong et a1 1962; Yang et al 1966; Whitney & Leissa 1969; 
Whitney & Pagano 1970; Whitney & Sun 1973; Nelson & Lorch 1974; Lo et a1 1977). 
Models based on (1) have no provision for satisfaction of the plate surface boundary 
conditions. In general, surfaces of the laminate may receive both normal and tangential 
loads. A general method for modelling plates satisfying the plate surface conditions, as 
applied to isotropic plates is discussed by Vijaya Kumar & Krishna Murty (1988a). In 
this study Lagrangian multipliers were used to satisfy the normal stress condition at the 
plate surface. The results did not indicate significant improvement in the accuracies in 
predicting stresses, commensurate with the complexity of the formulation. In practice 
plates are usually subjected to normal surface loads only, and in that case, shear strains 
at plate surfaces are zero. This feature can be incorporated into the models much more 
easily by rewriting the expansion for displacements in the form, 

where 
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q n  = C(l- tn-l), n=3,5,7 ..., 

u 2  = - W l , x  

v 2  = - W l , y  

and 
5 = z/h. 

Note that u1 and u1 are related to w, as in (3b) to accomodate Kirchhoff's model as a 
special case. This represents a generalization of several models currently available in 
the literature (Murthy 1981; Bhimaraddi & Stevens 1984; Reddy 1984, 1987; Krishna 
Murty 1987, 1988; Krishna Murty & Harikumar 1988; Krishna Murty & Vellaichamy 
1988b). 

In the displacement-based models all stresses can be estimated using the constitutive 
relations. We shall call such estimates of stresses as "the direct estimates". However, 
since the material constants are discontinuous across the interfaces, direct estimates of 
all stresses will be discontinuous across the interface. Therefore it is difficult to realize 
the true nature of interlaminar stresses as they are not continuous across the interfaces 
(see table 1). Thus direct estimates of interlaminar stresses are unlikely to be accurate. 
On the other hand, since in-plane stresses axcry and ow are discontinuous across 
interfaces, their direct estimates can be expected to be accurate. A [0/901, laminated 
plate strip, infinitely long y-axis simply supported at opposite edges at x = 0, a, 
subjected to sinusoidal load 

was analysed in detail by Krishna Murty & Vellaichamy (l988b) using the higher order 
shear deformation theory (HOST) and the classical laminated plate theory (CLPT). All the 
four layers of the laminate have equal thickness and the total plate thickness is 2h. The 
middle surface corresponds to  5 = 0, and 5 = 0.5 represents the interface. Material 
constants of the 0" layer are taken to be E J E T  = 25, ET/E ,  = 1, GL,/E, = 0.5, GLT 
= GLt, GTt/ET = 0.2, VLT = vTt = v,, = 0.25. A comparison of a typical in-plane stress 
normalized with the applied load a,* = a Jq, is shown in table 2. 

The exact solution is based on the theory of elasticity. It is clear that the a$ is 
estimated fairly accurately in HOST and the discontinuity at the interface is revealed 

Table 2. Comparison of cr: (2hla = 0.08). 

t Exact Direct estimates 

HOST CLPT 
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Table 3. Comparison of a$ (2hla = 0.08). 

5 Exact Direct 
estimate 

HOST 

Statically equivalent 
estimate 

HOST CLPT 

satisfactorily. Further we see that the estimates by CLPT, contain a error of about 10% 
only in the maximum value of o,*, even when the thickness to width ratio is as large as 
0.08. Comparison of a typical interlaminar stress, o,* = o,/qo, with the exact solution is 
shown in table 3. 

The direct estimates indicate an unrealistic discontinuity at the interface and contain 
an error of 47.5% in the maximum value of the normal stress at the plate surface. 
Recognising that the governing equations in these models represent elemental 
equilibrium in an average sense, it may be noted that the equations of equilibrium, 
representing pointwise equilibrium, 

are available to obtain better estimates of interlaminar stresses than the direct 
estimates. 

Substituting the in-plane estimates for stresses ox, o;. and oxy in the equations of 
equilibrium (4) and integrating, one can get estimates to interlaminar stresses as, 

o x  = - ( o x ,  + ox,,,) dz + constant, 

by, = - 

5 
+ cxy,x) dz + constant, 

cz= - S (ox,,, + oYz,,,) dz + constant. (5)  

Such estimates are referred to here as "statically equivalent estimates". We see from 
table 3 that such estimates for interlaminar stresses display the required continuity 
across the interface and agree closely with the exact solution. It may be noted that the 
statically equivalent estimates of interlaminar stresses by the classical plate theory are 
also close to the exact solution. Table 4 shows a comparison of the interlaminar strain, 

8: = &Z/&O, 

where E~ = (2/Dl ~ ~ ) ( a / h ) ~  and Dl, is the plate bending rigidity. 
Direct estimates display an unrealistic continuity across the interface ( = 0-5. The 

statically equivalent estimates of strain are obtained using the statically equivalent 
estimates of interlaminar stresses and direct estimates of in-plane stresses in the 
constitutive relations. These statically equivalent estimates of strains display the 



Theoretical modelling of laminated composite plates 

Table 4. Comparison of st. 

5 Exact Direct Statically equivalent 
HOST estimate 

HOST CLPT 

required discontinuity in strains at the interface and agree closely with the exact 
solution. 

Thus we see, that by choosing statically equivalent estimates of interlaminar stresses 
and strains and direct estimates of in-plane stresses and strains, displacement-based 
models can be used to study stresses in laminates. Nevertheless from (5) it may be noted 
that in view of the availability of only a single constant of integration, the interlaminar 
stresses estimates may not, in general, satisfy plate boundary conditions at both the 
plate surfaces, z = f. h. However, experience based on numerical studies (Krishna 
Murty & Vellaichamy 1988b) indicates that this violation is minimal and may not be 
of real practical consequence. 

3. Iterative modelling 

As an extension to 'displacement-based modelling', it is possible to construct a 
heirarchy of models, wherein the displacement field at a given stage of the iterative 
model is deduced from the statical equivalent strains corresponding to the previous 
step of iteration. Such models are referred to  here as 'iterative models7. Further, the 
difficulty in satisfying the second plate surface boundary condition may also be 
removed by obtaining the basic displacement variables, ui, v, ,  w i . .  . etc. as a solution of 
the differential equations representing the plate surface boundary conditions instead of 
the "elemental equilibrium equations", whose satisfaction is not in any way essential, 
since local equilibrum equations are used to obtain the interlaminar stresses. Recently 
Valisetty & Rehfield (1985) presented a comprehensive model wherein this new 
hypothesis, namely that statically equivalent stresses from classical theory can be 
used to obtain transverse shear and normal strains, was introduced in place of the 
traditional Kirchhoff's hypothesis of zero transverse shear and normal strains. Krishna 
Murty & Vijaya Kumar (1987) and Vijaya Kumar & Krishna Murty (1988b) 
introduced the idea of utilizing plate surface boundary conditions, as governing 
equations, instead of the 'elemental equilibrium equations'. 

A comparison of the displacements and stresses in a [0/90], laminated strip subjected 
to sinusoidal loading of (a,),= ,\, = + q0 sin nx/a is given in table 5. Higher accuracies 
attained at the second stage of the iteration are evident from this comparison. 
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Table 5. Comparison of displacements and stresses. 

Quantity 5 CLPT HOST' IterativeZ Exact 

W* = W/W,,,,; U* = U/Uo,,; 'Krishna Murty & 
Vellaichamy (1988b); 2Krishna Murty & Vijaya Kumar (1987). 

4. Finite element modelling 

The need for converting these models into a finite element form in order to be able to 
apply them to general laminates is obvious. In the displacement methods broadly two 
approaches may be considered for this purpose, namely (i) direct utilization of the 
three-dimensional finite elements, and (ii) finite elements based on classical laminated 
plate theory and higher order models. Isoparametric elasticity elements have been 
successfully used to study stresses in laminates (Whitcomb et a1 1982; Carlsson 1983). 
Apart from the requirement of large degrees of freedom to model the necessary detail, it 
is observed (Whitcomb et a1 1982) that the finite element solution is accurate except in 
one or two elements closest to the plane of discontinuity. The interface in a laminate is a 
plane of discontinuity in interlaminar strains. Further, isoparametric brick elements 
have no provision for inter-element stress continuity. Thus the suitability of such 

' elements, for estimating interlaminar stresses which are continuous across interfaces, 
needs to be examined carefully. On the other hand, finite elements based on CLPT or 
HOST are relatively simple, and the provision to realize the necessary continuity in 
stresses and strains at the interfaces can be incorporated. Recently Kant (Kant 1988; 
Kant & Pandya 1988) has developed finite elements based on higher order theories and 
demonstrated their application through several examples. It will be interesting to study 
the performance of such elements in estimating interlaminar stresses at free edges and 
rivet holes to bring out the adequacy or otherwise of such elements for critical 
applications involving the estimation of interlaminar stresses. 

5. Coraclusions 

In this paper displacement-based modelling of laminated composite plates is reviewed. 
Iterative modelling appears to be the most promising approach for the analysis of 
laminates as it has the provision to achieve the necessary continuities and discontinu- 
ities in stresses and strains across the laminate interfaces. The first step of the iterative 
model corresponds to the classical laminate plate theory with a small modification, 
namely statically equivalent estimates of transverse normal and shear strain replace 
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Kirchhoff's assumption of zero normal and shear strains. Several finite elements 
currently available in the literature may be easily modified to represent the first step of 
the iterative model. A similar approach can be implemented with finite element analysis 
based on higher order models also. 

This work has been supported by the Aeronautics Research and Development Board, 
Ministry of Defence, Government of India. Valuable discussions with Professor K 
Vijaya Kumar, in particular his contributions to iterative modelling, are gratefully 
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