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Abstract

Call graphs depict the static, caller-callee relation be-
tween “functions” in a program. With most source/target
languages supporting functions as the primitive unit of com-
position, call graphs naturally form the fundamental control
flow representation available to understand/develop soft-
ware. They are also the substrate on which various inter-
procedural analyses are performed and are integral part
of program comprehension/testing. Given their universality
and usefulness, it is imperative to ask if call graphs exhibit
any intrinsic graph theoretic features – across versions, pro-
gram domains and source languages. This work is an at-
tempt to answer these questions: we present and investigate
a set of meaningful graph measures that help us understand
call graphs better; we establish how these measures cor-
relate, if any, across different languages and program do-
mains; we also assess the overall, language independent
software quality by suitably interpreting these measures.

1 Introduction

Complexity is one of the most pertinent characteristics
of computer programs and, thanks to Moore’s law, com-
puter programs are becoming ever larger and complex; it’s
not atypical for a software product to contain hundreds of
thousands, even millions of lines of code where individual
components interact in myriad of ways. In order to tackle
such complexity, variety of code organizing motifs were
proposed. Of these motifs, functions form the most fun-
damental unit of source code: software is organized as set
of functions – of varying granularity and utility, with func-
tions computing various results on their arguments. Critical
feature of this organizing principle is that functions them-
selves can call other functions. This naturally leads to the
notion of function call graph where individual functions are
nodes, with edges representing caller-callee relations; in-
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degree depicts the number of functions that could call the
function and outdegree depicts the number of functions that
this function can call. Since no further restriction employed,
caller-callee relation induces a generic graph structure, pos-
sibly with loops and cycles.

In this work we study the topology of such (static) call
graphs. Our present understanding of call graphs is limited;
we know: that call graphs are directed and sparse; can have
cycles and often do; are not strongly connected; evolve over
time and could exhibit preferential attachment of nodes and
edges. Apart from these basic understanding, we do not
know much about the topology of call graphs.

2 Contributions

In this paper we answer questions pertaining to topologi-
cal properties of call graphs by studying a representative set
of open source programs. In particular, we ask following
questions: What is the structure of call graphs? Are there
any consistent properties? Are some properties inherent to
certain programming languages/problem classes? In order
to answer these questions, we investigate set of meaningful
metrics from plethora of graph properties [9]. Our specific
contributions are:

1) We motivate and provide insights as to why certain
call graph properties are useful and how they help us de-
velop better and robust software. 2) We compare graph
structure induced by different language paradigms under an
eventual but structurally immediate structure – call graphs.
The authors are unaware of any study that systematically
compare the call graphs of different languages; in particular,
the “call graph” structure of functional languages. 3) Our
corpus, being varied and large, is far more statistically rep-
resentative compared to the similar studies ([24], [4],[18]).
4) We, apart from confirming previous results in a rigorous
manner, also compute new metrics to capture finer aspects
of graph structure. 5) As a side effect, we provide a po-
tential means to assess software quality, independent of the
source language.

Rest of the paper is organized as follows. We begin by



justifying the utility of our study and proceed to introduce
relevant structural measures in section 4. Section 5 dis-
cusses the corpus and methodology. We then present our
the measurements and interpretations (Section 6). We con-
clude with section 7 and 8.

3 Motivation

We argue that it helps to understand the detailed topol-
ogy of call graphs: they define the set of permissible inter-
actions and information flows, and could influence software
processes in non trivial ways. In order to give the reader an
intuitive understanding as to how graph topology could in-
fluence software processes, we present following four sce-
narios where it does.

Bug Propagation Dynamics Consider how a bug in
some function affects the rest of the software. Let foo call
bar and bar could return an incorrect value because of a
bug in bar. if foo is to incorporate this return value in
its part of computation, it is likely to compute wrong an-
swer as well; that is, bar has infected foo. Note that such
an infection is contagious and, in principle, bar can in-
fect any arbitrary function fn as long as fn is connected to
bar. Thus connectedness as graph property trivially trans-
lates to infectability. Indeed, with appropriate notions of
infection propagation and immunization, one could under-
stand bugs as an epidemic process. It is well known that
graph topology could influence the stationary distribution
of this process. In particular, the critical infection rate – the
infection rate beyond which an infection is not containable
– is highly network specific; in fact, certain networks are
known to have zero critical thresholds [5]. It pays to know
if call graphs are instances of such graphs.

Software Testing: Different functions contribute differ-
ently to software stability. Certain functions that, when
buggy, are likely to render the system unusable. Such func-
tions, functions whose correctness is central to statistical
correctness of the software, are traditionally characterized
by per-function attributes like indegree and size. Such sim-
ple measure(s), though useful, fail to capture the transi-
tive dependencies that could render even a not-so-well con-
nected function an Achilles heel. Having unambiguous met-
rics that measure a node’s importance helps making soft-
ware testing more efficient. Centrality is such a measure
that gives a node’s importance in a graph. Once relevant
centrality measures were assigned, one could expend rel-
atively more time testing central functions. Or, equally,
test central functions and their called contexts for preva-
lent error modes like interface nonconformity, context dis-
parity and the likes ([21], [7]). By considering node cen-
tralities, one could bias the testing effort to achieve similar
confidence levels without a costlier uniform/random testing
schedule; though most developers intuitively know the im-

portance of individual functions and devise elaborate test
cases to stress these functions accordingly, we believe such
an idiosyncratic methodology could be safely replaced by
an informed and statistically tenable biasing based on cen-
tralities. Centrality is also readily helpful in software impact
analysis.

Software Comprehension: Understanding call graph
structure helps us to construct tools that assist the devel-
opers in comprehending software better. For instance, con-
sider a tool that magically extracts higher-level structures
from program call graph by grouping related, lower-level
functions. Such a tool, for example, when run on a kernel
code base, would automatically decipher different logical
subsystems, say, networking, filesystem, memory manage-
ment or scheduling. Devising such a tool amounts to find-
ing appropriate similarity metric(s) that partitions the graph
so that nodes within a partition are “more” similar com-
pared to nodes outside. Understandably, different notions of
similarities entail different groupings. Recent studies show
how network structure controls such grouping [2] and how
properties of nodes can be effectively used to improve the
developer-perceived clustering validity ([26], [17]).

Inter Procedural Analysis Call graph topology could
influences both precision and convergence of Inter Procedu-
ral Analysis (IPA). When specializing individual procedures
in a program, procedures that have large indegree could end
up being less optimal: dataflow facts for these functions
tend to be too conservative as they are required to be con-
sistent across a large number of call sites. By specifically
cloning nodes with large indegree and by distributing the
indegrees “appropriately” between these clones, one could
specialize individual clones better. Also, number of itera-
tions an iterative IPA takes compute a fixed-point depends
on max(longest path length, largest cycle) of the call graph.

4 Statistical Properties of Interest

As with most nascent sciences, graph topology litera-
ture is strewn with notions that are overlapping, correlated
and misused gratuitously; for clarity, we restrict ourselves
to following structural notions. A note on usage: we em-
ploy graphs and networks interchangeably; G = (V,E),
| V |= n and | E |= m; (i, j) implies i calls j; di denotes
the degree of vertex i and dij denotes the geodesic distance
between i and j; N(i) denotes the immediate neighbours
of i; graphs are directed and simple: for every (i1, j1) and
(i2, j2) present, either (i1 6= i2) or (j1 6= j2) is true.

Graphs, in general, could be modeled as random, small
world, power-law, or scale rich, each permitting different
dynamics.

Random graphs: random graph model [11], is perhaps
the simplest network model: undirected edges are added
at random between a fixed number n of vertices to create



a network in which each of the 1
2n(n − 1) possible edges

is independently present with some probability p, and the
number of edges connected to each vertex the degree of the
vertex is distributed according to a Poisson distribution in
the limit of large n.

Small world graphs: exhibit high degree of cluster-
ing and have mean geodesic distance `, defined as, `−1 =

1
n(n+1)

∑
i 6=j d−1

ij , in the range of log n; that is, number of
vertices within a distance r of a typical central vertex grows
exponentially with r [19].

It should be noted that a large number of networks, in-
cluding random networks, have ` in the range of log n or,
even, log log n. In this work, we deem a network to be
small world if ` grows sub logarithmically and the network
exhibits high clustering.

Power law networks: These are networks whose degree
distribution follow the discrete CDF: P [X > x] ∝ cx−γ ,
where c is a fixed constant, and γ is the scaling exponent.
When plotted as a double logarithmic plot, this CDF ap-
pears as a straight line of slope −γ. The sole response of
power-law distributions to conditioning is a change in scale:
for large values of x, P [X > x|X > Xi] is identical to
the (unconditional) distribution P [X > x]. This “scale in-
variance” of power-law distributions is attributed as scale-
freeness. Note that this notion of scale-freeness does not
depict the fractal-like self similarity in every scale.

Graphs with similar degree distributions differ widely
in other structural aspects; rest of the definitions introduce
metrics that permit finer classifications.

degree correlations: In many real-world graphs, the
probability of attachment to the target vertex depends also
on the degree of the source vertex: many networks show
assortative mixing on their degrees, that is, a preference for
high-degree nodes to attach to other high-degree node; oth-
ers show disassortative mixing where high-degree nodes at-
tach to low-degree ones. Following measure, a variant of
Pearson correlation coefficient [20], gives the degree corre-

lation. ρ =
m−1

∑
i
jiki−[m−1

∑
i

1
2 (ji+ki)]

2

m−1
∑

i

1
2 (j2

i
+k2

i
)−[m−1

∑
i

1
2 (ji+ki)]2

, where

ji, ki are the degrees of the vertices at the ends of ith edge,
with i = 1 · · ·m. ρ takes values in the range −1 ≤ ρ ≤ 1,
with ρ > 0 signifying assortativity and ρ < 0 signifying
dissortativity. ρ = 0 when there is no discernible correla-
tion between degrees of nodes that share an edge.

scale free metric: a useful measure capturing the fractal
nature of graphs is scale-free metric s(g) [16], defined as:
s(g) =

∑
(i,j)∈E didj , along with its normalized variant

S(g) = s(g)
smax

; smax is the maximal s(g) and is dictated by
the type of network understudy1.

s(g) is maximal when nodes with similar degree con-
nect to each other [13]; thus, S(g) is close to one for net-

1For unrestricted graphs, smax =
∑n

i=1
(di/2).d2

i .

works that are fractal like, where the connectivity, at all de-
grees, stays similar. On the other hand, in networks where
nodes repeatedly connect to dissimilar nodes, S(g) is close
to zero. Networks that exhibit power-law, but have have a
scale free metric S(g) close to zero are called scale rich;
power-law networks whose S(g) value is close to one are
called scale-free. Measures S(g) and ρ are similar and are
correlated; but they employ different normalizations and are
useful in discerning different features.

clustering coefficient: is a measure of how clustered,
or locally structured, a graph is: it depicts how, on an aver-
age, interconnected each node’s neighbors are. Specifically,
if node v has kv immediate neighbors, then the clustering
coefficient for that node, Cv , is the ratio of number of edges
present between its neighbours Ev to the total possible con-
nections between v’s neighbours, that is, kv(kv −1)/2. The
whole graph clustering coefficient, C, is the average of Cvs:
that is, C = 〈Cv〉v =

〈
2Ev

kv(kv−1)

〉
v
.

clustering profile: C has limited use when immedi-
ate connectivity is sparse. In order to understand inter-
connection profile of transitively connected neighbours, we

use clustering profile [1]: Cd
k =

∑
{i|di=k}

Cd(i)

|{i|di=k}| , where

Cd(i) = |{(j,k);j,k∈N(i)|djk∈G(V \i)=d}|
(|N(i)|

2 )
centrality: of a node is a measure of relative impor-

tance of the node within the graph; central nodes are both
points of opportunities – in that they can reach/influence
most nodes in the graph, and of constraints – that any per-
turbation in them is likely to have greater impact in a graph.
Many centrality measures exist and have been successfully
used in many contexts ([6], [10]). Here we focus on be-
tweenness centrality Bu (of node u), defined as the ratio
of number of geodesic paths that pass through the node
(u) to that of the total number of geodesic paths: that is,
Bu =

∑
ij

σ(i,u,j)
σ(i,j) ; nodes that occur on many shortest paths

between other vertices have higher betweenness than those
that do not.

connected components: size and number of connected
components gives us the macroscopic connectivity of the
graph. In particular, number and size of strongly connected
components gives us the extent of mutual recursion present
in the software. Number of weakly connected component
gives us the upper bound on amount of runtime indirection
resolutions possible.

edge reciprocity: measures if the edges are reciprocal,
that is, if (i, j) ∈ E, is (j, i) also ∈ E? A robust mea-
sure for reciprocity is defined as [12]: ρ = %−ā

1−ā where

% =
∑

ij
aijaji

m and ā is mean of values in adjacency matrix.
This measure is absolute: ρ greater than zero imply larger
reciprocity than random networks and ρ less than zero im-
ply smaller reciprocity than random networks.
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Figure 1. Indegree Distribution

5 Corpora & Methodology

We studied 35 open source projects. The projects are
written in four languages: C, C++, Ocaml and Haskel. Ap-
pendix A.1 enlists the language, name, version and domain
along with graph size, N and M . Most programs used are
large, used by tens of thousands of users, written by hun-
dreds of developers and were developed over years. These
programs are actively developed and supported. Most of
these programs – from proof assistant to media player, pro-
vide varied functionalities and have no apparent similar-
ity or overlap in usage/philosophy/developers; if any, they
exhibit greater orthogonality: Emacs Vs Vim, OCaml Vs
GCC, Postgres Vs Framerd, to name a few. Many are
stand-alone programs while few, like glibc and ffmpeg,
are provided as libraries. Some programs, like Linux and
glibc, have machine-dependent components while others
like yarrow and psilab are entirely architecture independent.

In essence, our sample is unbiased towards applications,
source languages, operating systems, program size, pro-
gram features and developmental philosophy. The corpus
versions and age vary widely: some are few years old while
others, like gcc, Linux kernel and OCamlc, are more than a
decade old. We believe that any invariant we find in such a
varied collection is likely universal.

We employed a modified version of CodeViz [27] to
extract call graphs from respective sources. For OCaml
and Haskell, we compiled the sources to binary and used
this modified CodeViz to extract call graph from bina-
ries. OCaml was compiled to native using ocamlopt while
for Haskell we used GHC. A note of caution: to handle
Haskell’s laziness, GHC uses indirect jumps. Our tool,
presently, could handle such calls only marginally; we urge
the reader to be aware of results for measures that are easily
perturbed by edge additions.

We used custom developed graph analysis tools to mea-
sure most of the properties; where possible we also used
the graph-tool package [14]. We use the largest weakly
connected components for our measurements. Component
statistics were computed for the whole data set.
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6 Interpretation

In the following section we walk through the results, dis-
cuss what these results mean and why they are of interest to
language and software communities. Note that most plots
have estimated sample variance as the confidence indicator.
Also, most graphs run a horizontal line that separates data
from different languages.

Degree Distribution: Fitting samples to a distribution
is impossibly thorny: any sample is finite, but of the dis-
tributions there are infinitely many. Despite the hardness of
this problem, many of the previous results were based either
on visual inspection of data or on linear regression, and are
likely to be inaccurate [8].

We use cumulative distribution to fit the data and we
compute the likelihood measures for other distributions in
order to improve the confidence using [8]. Figures 1 and
2 depict how four programs written in four different lan-
guage paradigms compare; the indegree distribution permits
power-law (2.3 ≤ γ '≤ 2.9) while the outdegree distri-
bution permits exponential distribution (Haskell results are
coarse, but are valid). This observation, that in and out de-
gree distributions differ consistently across languages, is ex-
pected as indegree and outdegree are conditioned very dif-
ferently during the developmental process.

Outdegree has a strict budget; large, monolithic func-
tions are difficult to read and reuse. Thus outdegree is min-
imized on a local, immediate scale. On the other hand,
large indegree is implicitly encouraged, up to a point; inde-
gree selection, however, happens in a non-local scale, over
a much larger time period; usually backward compatibil-
ity permits lazy pruning/modifying of such nodes. Conse-
quently one would expect the variability of outdegree – as
depicted by the length of the errorbar, to be far less com-
pared to that of the indegree. This is consistent with the
observation (Fig. 3). Note that the tail of the outdegree is
prominent in OCaml and C++: languages that allow highly
stylized call composition.

Such observations are critical as distributions portend the
accuracy of sample estimates. In particular, such distribu-
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tions as power-law that permits non-finite mean and vari-
ance – consequently eluding central limit theorem, are very
poor candidates for simple sampling based analyses; under-
standing the degree distribution is of both empirical and the-
oretical importance.

Consider the bug propagation process delineated in Sec-
tion 3. Assuming that the inter node bug propagation is
Markovian, we could construct an irreducible, aperiodic, fi-
nite state space Markov chain (not unlike [6]) with bug in-
troduction rate β and debugging (immunization) rate δ as
parameters. Note that this Markov chain has two absorb-
ing states: all-infected or all-cured. Equipped with these
notions, we could ask what is the minimal critical infec-
tion rate βc beyond which no amount of immunization will
help to save the software; below βc the system exponen-
tially converges to the good, all-cured absorbing state. It is
known that for a sufficiently large power-law network with
exponent in the range 2 < γ ≤ 3, βc is zero [5]. Thus
one is tempted to conclude that, provided Markovian as-
sumption holds, it is statistically impossible to construct an
all-reliable program. However that would be inaccurate as
the sum of indegree and outdegree distribution2 indegree
and outdegree need not follow power-law. However a re-
cent study [25] establishes that, for finite networks, βc is
bounded by the spectral diameter of the graph; in particular,
βc = 1

λ1,A
, where λ1,A is the largest eigenvalue of the adja-

cency matrix. For a “robust” software, we require βc to be
large; consequently, we would like λ1,A to be very small.
Figure 4 depicts the relation between λ1,A and the graph
size, n. However, it is evident from the plot that larger the
graph, higher the λ1,A. This trend is observed uniformly
across languages. Thus, we are to conclude that large pro-
grams tend to be more fragile. Another equally important
inference one can make from the indegree distribution is
that uniform fault testing is bound to fail: should one is to
build a statistically robust software, testing efforts ought to
be heavily biased. These two inferences align closely with
the common wisdom, except that these inferences are rigor-

2Bug propagation is symmetric: foo and bar can pass/return bugs to
one another.
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ously established (and party explained) using statistical the
nature of call graphs.

Scale Free Metric: Fig. 5 shows how scale-free metric
for symmetrized call graphs vary with different programs.
Two observations are critical: First, S(g) is close to zero.
This implies call graphs are scale-rich and not scale-free.
This is of importance because in a truly scale-free networks,
epidemics are even harder to handle; hubs are connected to
hubs and the Markov chain rapidly converged to the all-
infected absorption state. In scale-rich networks, as hubs
tend to connect to lesser nodes, the rate of convergence is
less rapid. Second, S(g) appears to be language indepen-
dent3. Both near zero and higher S(g)s appear in all lan-
guages. Thus call graphs, though follow power-law for in-
degree, are not fractal like in the self-similarity sense.

Degree Correlation: Fig 6 show how input-input (i-i)
and output-output (o-o) degrees correlate with each other.
These sets are weakly assortative, signifying hierarchical
organization.

But finer picture evolves as far as languages are con-
cerned. C programs appears to have very similar i-i and
o-o profiles with o-o correlation being smaller and compa-
rable to i-i correlation. In addition, C’s correlation measure
is consistently less than that of other languages and is close
to zero; thus, C programs exhibit as much i-i/o-o correlation
as that of a random graph of similar size. In other words,
if foo calls bar, the number of calls bar makes is inde-
pendent of the number of calls foo makes; this implies less
hierarchical program structure as one would like the level
n functions to receive fewer calls compared to level n − 1
functions. For instance, variance(list) is likely to re-
ceive fewer calls compared to sum(list); we would also
like level n functions to have higher outdegree compared
to level n − 1 functions. Thus, in a highly hierarchical de-
sign, i-i and o-o correlations would be mildly assortative,
with i-i being more assortative. For C++, i-i and o-o dif-
fer and are not ordered consistently. OCaml and Haskell
exhibit marked difference in correlations: as with C, the o-
o correlation is close to zero; but, i-i correlation is orders

3Except Haskell; but this could be an artifact of edge limited sample.
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of magnitude higher than o-o correlation. That is, OCaml
forces nodes with “proportional” indegree to pair up. If foo
is has an indegree X, bar is likely to receive, say, 2X in-
degree. One could interpret this result as a sign of stricter
hierarchical organization in functional languages.

Clustering Coefficient: Fig. 7 depicts how the call
graph clustering coefficients compare to clustering coeffi-
cients of random networks of same size. Computed clus-
tering coefficients are orders of magnitude higher than their
random counterpart signifying higher degree of clustering.
Also, observe that `, as depicted is Fig. 10, is in the or-
der of log n. Together these observations make call graphs
decidedly small world, irrespective of the source language.

We also have observed that average clustering coefficient
for nodes of particular degree, C(di) follows power-law.
That is, the plot of di to C(di) follows the power-law with
C(di) ∝ d−1

i : high degree nodes exhibit lesser cluster-
ing and lower degree notes exhibit higher clustering. It is
also observed that OCaml’s fit for this power-law is the one
that had least misfit. Though we need further samples to
confirm it, we believe functional languages exhibit cleaner,
non-interacting hierarchy compared to both procedural and
OO languages.

Component Statistics: Fig. 8 gives us the components
statistics for the data set. It depicts the number of weakly
connected components (#WCC), number of strongly con-
nected components (#SCC), and fraction of nodes in the
largest strongly connected component (%SCC).

#WCC is lower in C and OCaml. For C++ and Haskell,
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#WCC is higher compared to rest of the sample. This is
an indication of lazy binding and we believe large portion
of these components are likely to get spliced together at
runtime; further studies with runtime instrumentation are
needed to confirm this observation. The #SCC values are
highest for OCaml. This observation, combined with reci-
procity of OCaml programs, makes OCaml a language that
encourages recursion at varying granularity. On the other
end, C++ rates least against #SCC values.

Another important aspect in Fig. 8 is the observed val-
ues for %SCC; this fraction varies, surprisingly, from 1% to
30% of total number of nodes. C leads the way with some
applications, notably vim and Emacs, measuring as much as
20 to 30% for %SCC. OCaml follows C with a moderate 2
to 6% while C++ measures 1% to 3%. We do not yet know
why one third of an application cluster to form a SCC. But,
%SCC values say that certain languages, notably OCaml,
and programs domains (Editors: Vim and Emacs) exhibit
significant mutual connectivity.

Edge Reciprocity: Fig. 12 shows the plot of edge reci-
procity for various programs. Edge reciprocity is a measure
of direct mutual recursion in the software. As seen in the
figure, mutual recursion is systematically avoided in most
of the programs. High reciprocity in a layered system im-
plies layering inversion; thus reciprocity could be used as
a metric to study the extend of local recursion and layering
violations in software. We would, ideally, like a program to
have negative reciprocity.
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Figure 10. Harmonic Geodesic Mean

Most programs exhibit close to zero reciprocity: most
call graphs exhibit as much reciprocity as that of random
graphs of comparable size. None exhibit negative reci-
procity, implying no statistically significant preferential se-
lection to not to violate strict layering.

The software that had least reciprocity is the Linux ker-
nel. Recursion of any kind is abhorred inside kernel as
kernel-stack is a limited resource; besides, in a environment
where multiple contexts/threads communicate using shared
memory, mutual recursion could happen through continua-
tion flow, not just as explicit control flow. Functional lan-
guages like OCaml naturally show higher reciprocity. An-
other curious observation is that compilers, both OCamlc
and gcc, appear to have relatively higher reciprocity. This
is the second instance where applications (Compilers: GCC
and OCamlc) determining the graph property.

Clustering Profile: As we see in Fig 13, Clustering Pro-
file indeed gives us a better insight. Y axis depicts the av-
erage clustering coefficient for nodes, say i and j, that are
connected by geodesic distance dij . In all the graphs ob-
served, this average clustering increases up to dij=3 and
falls rapidly as dij increases further. We measured cluster-
ing profile for degrees one to ten and the clustering profile
appears to be unimodal, reaching the maximum at dij=3,
irrespective of language/program domain. It suggests that
maximal clustering occurs between nodes that are separated
exactly by five hops: clustering profile for a node u is mea-
sured with u removed; so dij=3 is 5 hops in the original
graph. However exciting we find this result to be, we cur-
rently have no explanation for this phenomenon.
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Figure 12. Edge Reciprocity

Betweenness: Fig. 9 to 11 depict how betweenness cen-
trality is distributed – in different programs, written in dif-
ferent different languages. Note that betweenness is not dis-
tributed uniformly: it follows a rapidly decaying exponen-
tial distribution. This confirms our observation that impor-
tance of functions is distributed non-uniformly. Thus, by
concentrating test efforts in functions that have higher be-
tweenness – functions that are central to most paths – we
could test the software better, possibly with less effort. An
interesting line of investigation is to measure the correlation
between various centrality measures and actual per function
bug density in a real-world software.

7. Related Work

Understanding graph structures originating from various
fields is an active field of research with vast literature; there
is a renewed enthusiasm in studying graph structure of soft-
ware and many studies, alongside ours, report that software
graphs exhibit small-world and power-law properties.

[18] studies the call graphs and reports that both indegree
and outdegree distributions follow power-law distributions
and the graph exhibits hierarchical clustering. But [23] sug-
gests that indegree alone follows power-law while the out-
degree admits exponential distribution. [23] also suggests a
growing network model with copying, as proposed in [15],
would consistently explain the observations.

More recently, [4] studies the degree distributions of var-
ious meaningful relationships in a Java software. Many re-
lationships admit power-law distributions in their indegree
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reachable in k+2 hops

and exponential distribution in their out-degree. [22] stud-
ies the dynamic, points-to graph of objects in Java programs
and found them to follow power-law.

Note that most work, excepting [4], do not rigorously
compare the likelihood of other distributions to explain the
same data. Power-law is notoriously difficult to fit and even
if power-law is a genuine fit, it might not be the best fit [8].

8. Conclusion & Future Work

We have studied the structural properties of large soft-
ware systems written in different languages, serving differ-
ent purposes. We measured various finer aspects of these
large systems in sufficient detail and have argued why such
measures could be useful; we also depicted situations where
such measurements are practically beneficial. We believe
our study is a step towards understanding software as an
evolving graph system with distinct characteristics, a view-
point we think is of importance in developing and maintain-
ing large software systems.

There is lot that needs to be done. First, we need to mea-
sure the correlation between these precise quantities and
the qualitative, rule of thumb understanding that develop-
ers usually possess. This helps us making such qualitative,
albeit useful, observations rigorous. Second, we need to
verify our finding over a much larger set to improve the
inference confidence. Finally, graphs are extremely useful
objects that are analysed in a variety of ways, each expos-
ing relevant features; of these variants, the authors find two
fields very promising: topological and algebraic graph the-
ories. In particular, studying call graphs using a variant of
Atkin’s A-Homotopy theory is likely to yield interesting re-
sults [3]. Also, spectral methods applied to call graphs is an
area that we think is worth investigating.
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