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Abstract. We analyse the system consisting of a highly capable workcentre, 
which processes a variety of part types, using queueing models. The various 
part types produced by the system have distinct arrival and processing 
durations that are stochastic in nature. When an arriving workpiece finds 
the machine busy, it waits in a pre-process storage buffer (queue); this 
buffer may be common for all the part types, or may be dedicated for that 
part type. Further, this buffer may be capable of holding only a finite 
number of workpieces, or may be of infinite capacity. When the machine 
changes over from producing one type of part to another, a setup operation 
of stochastic duration is necessary to adjust the machine and load the 
necessary tools for production of the next part type. This model is repre- 
sentative of a typical machining centre in an Automated Manufacturing 
System. We focus on ~ 1 1 ~ 1 1  models and multiqueue polling models, and 
their variants. The important performance measures of the system obtained 
by queueing analysis are the part-type-wise values of the mean lead time, 
mean inventory level, and the mean machine utilisation. 

Keywords. Stochastic analysis; versatile workcentres; automated manu- 
facturing system; lead time; inventory level; machine utilisation. 

1. Introduction 

In this paper, we present stochastic models for flexible machining centres which are 
the basic processing nodes of an Automated Manufacturing System (AMS). The major 
goal of automated manufacturing, viz., high quality, low volume production of a 
variety of part types concurrently, with low lead times, is sought to be achieved, based 
on the capability of the individual workcentres to process different part types. Hence, 
an understanding of the operation of these workcentres in the face of demands to 
produce multiple varieties of parts is very important in a performance evaluation 
study of the automated manufacturing system. 

The most important performance measures obtained from a study of this basic 
system are the mean lead time (the time duration from the entry of raw workpiece to 
the system to the completion of the processing operation on the workcentre), the 
mean inventory level (the mean number of workpieces waiting ahead of a newly arriving 
workpiece), and the mean machine utilisation for each of the part types produced. 
These performance measures are of great importance in manufacturing, especially so 
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in automated manufacturing where we seek to minimise the lead times and inventories 
(ideally, lead time must be just the processing time, and inventory level must be just 
the workpieces under processing), these performance measures are particularly 
important. In the terminology of the queueing model approach of our paper, these 
performance parameters correspond to the mean response time, the mean queue 
length and mean server utilisation respectively; the different part types are represented 
by multiple job classes. 

1.1 The model 

We solve the following system: there is a versatile machining centre capable of 
processing a variety of parts, of which there are N different types. Workpieces of part 
type i arrive to the system according to a general, independent and identically 
distributed interarrival process of mean rate Ai. If the machine is unable to serve this 
arriving workpiece immediately, the workpiece joins a queue to wait for the machine; 
the queue may be dedicated to that particular part type, or may be common to all 
part types. Further, the queue may be of finite capacity (capable of accommodating 
a maximum of a finite number of workpieces, say Ki for part type i). For processing 
workpieces of part type i, the machine has to be setup for this part type; this requires 
a setup operation, which has a general independent and identically distributed (i.i.d.) 
duration represented by the random variable Ri. If this setup is not disturbed, 
subsequent waiting workpieces of part type i can be processed without incurring 
additional setup. The machining of a type i workpiece takes a duration which is 
general i.i.d. and is represented by B,. Processed parts are assumed to leave the system 
immediately. Let Ti denote the lead time (system response time) and Li the mean 
inventory level (queue length) for part type i; we shall omit the subscript i when we 
deal with a single part type. The various aspects of the system considered in this 
paper may be modelled to varying degrees of detail; the issues considered, and their 
simplest and highest degrees of detail are summarised in table 1. 

To complete the description of the model, we need to specify how the machine 
chooses a particular part type (scheduling policy), and, once a particular part type is 
selected, how the waiting workpieces of that particular part type are processed (service 
policy). We shall refer to the combination of scheduling and service policies as operation 
policy. It must be noted that for certain operation policies, like the first-come-first- 
served and Bernoulli scheduling policies, the scheduling and service policies overlap; 
in such cases, for simplicity, we shall continue to refer to them as scheduling policies. 

The scheduling policy determines which of the N different part types is taken up 

Table 1. Aspects of the systems considered. 

Issue Simplest assumption Most detailed assumption 

Number of queues Common queue for all parts Separate queue for each part 
Queue capacity Infinite capacity Finite capacity (for each part 

type) 
Setup time Treated as a part of proces- Distinct setup time for each 

sing time. (Not considered part type. (Explicitly 
explicitly) considered) 
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for processing next when the processing of a particular part type is completed. 
Examples of scheduling policy that can be clearly demarcated from service policies are: 

Cyclic scheduling: We assume that there is a separate queue (which may be of finite 
capacity or infinite capacity) for each part type. The different part types are taken up 
in the cyclic order 1,2,3,. . . , N - 1, N, 1,2, etc. The processing of each part type is 
preceded by a corresponding setup operation for that part type. This type of scheduling 
has been widely discussed in the literature on the analysis of computer systems and 
computer communication networks and is referred to as cyclic service or polling. The 
two extensive survey articles by Takagi (1988, 1990) provide a comprehensive 
discussion on the modelling, analysis and applications of these and related systems. 

Probabilistic scheduling: We assume separate queues for different part types. 
Whenever the machine finishes processing a part type, the part type i is chosen next 
with a probability pi, (0 < pi < 1 for 1 Q i < N,  and Cy= pi = 1). Each serfice is preceded 
by an appropriate setup. These models are referred to as random polling models; an 
analysis of the discrete time version of this system is developed by Kleinrock & Levy 
(1988). 

Markovian scheduling: This is an extension of probabilistic scheduling. Each part 
type has a separate queue. When the machine completes processing for (say) type i 
parts, we next take up type j parts for machining with probability p i S j ,  where 
0 < pi, < 1, for 1 < i,j < N,  and for each part i, X?= lpi, = 1. We assume that the 
N x N matrix [pi, j ]  forms the transition matrix of a irreducible, discrete time Markov 
chain. 

The service policies can be clearly distingushed from the scheduling policy for the 
cases mentioned above. The service policy determines how much service is carried out 
for each part type, once the machine is setup for it. The service policies widely 
considered in the literature are: 

Exhaustive: Once the workcentre is setup for a part, say type i ,  machining of type 
i parts is continued till no further workpieces of type i are waiting. In particular, 
those workpieces that may arrive during the current setup are also machined during 
this setup. 

Gated: The machine processes all and only those workpieces that are waiting when 
the setup is completed. In particular, those workpieces of this part type that may 
arrive during the current setup have to wait for the next setup to be processed. 

Limited: The amount of machining carried out on a part type is limited by specifying 
an upper limit on either the number of workpieces that may be processed during a 
setup or the maximum time for which waiting workpieces of the part type may be 
taken up for processing. Accordingly, we have either 

-K-limited service, where a maximum number, say Li of a part type i workpieces 
may be processed during the current setup, or 

- T-limited service, where processing of type i parts is allowed for a maximum duration 
LT~. 

Further, parts may be taken up in either exhaustive or gated mode for processing 
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under each of the above service disciplines, giving us a total of four variants of limited 
service. The K-limited, exhaustive discipline is the one commonly treated in the 
literature. 

Given one of the above mentioned scheduling policies, if all the N part types adapt 
the same service discipline, e.g., all the part types use the gated service policy, then 
we have a system with homogenous service policy. On the other hand, if different part 
types have distinct service policies, e.g., part 1 has exhaustive service, part 2 has gated 
service, part 3 has K-limited-gated service and so on, we have a system with mixed 
service. 

The following are examples of operation policies where the scheduling and service 
policies overlap. 

First come first served (FCFS):  This assumption is commonly made in the literature 
whenever there are random arrivals: all the arriving workpieces wait in a single, 
infinite capacity queue, from which they are taken up in an FCFS fashion for processing. 
The GI /G /~  queueing models are based on this assumption. Such models have been 
extensively applied in the modelling of manufacturing systems as a network of queues, 
each queue representing a workcentre. 

Bernoulli scheduling: This is an example of a non-exhaustive service discipline 
applicable to rnultiqueue systems (i-e., a separate queue for each part type). At each 
instant of completion of machining of part type i, if the queue of part i is not empty, 
the machine .makes a random decision: with probability pi, (0 6 pi < I), it processes 

arrival rates 
part type 1 

(scheduling policy) \ I 

mean setup time 8; 

i processing time hi : 

. .. .... .... .. 

part type N / 
preprocess storage buffers 

(finite or infinite capacity) 
Figure 1. The basic model of a versatile workcentre. 
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the next waiting workpiece of the same part type, and with probability 1 - p i  it changes 
over to the next part type. If the queue of part i was empty at the completion of a 
type i workpiece machining, it changes over to the next part type with probability 1. 
When the machine switches from one part type to the next, a setup is carried out for 
the new part type before actual machining: Recently, Tedijanto (1990) presented a n  
analysis of this service discipline; the symmetric version of this case has been exactly 
solved for the mean waiting time of each part type. 

The basic model of the workcentre treated in this paper is depicted in figure 1. 
The organisation of the paper is as follows: in the rest of this section, we present 

a brief survey of the literature on work related to this paper. In the next section, wc: 
present single queue, single server systems which are simplifications of the GI ,, GI,, . - . , 
GI,/G,, G2.. . , G,/~/FCFS systems. Section 3 focusses on queueing analysis of multi- 
queue models, particularly cyclic server models. In 4 4, we present numerical examples 
from the manufacturing context based on the models presented in this paper. Section S 
concludes the paper. 

1.2 Related literature 

The issue of scheduling multiple part varieties on a single machine under known 
demands, processing times and setup times (i.e., the deterministic scheduling problem 
for a single machine) has been well researched (Dobson et a1 1987 and references 
therein). Several heuristic algorithms have been proposed for the control of this system 
under time varying stochastic demands, but assuming fixed production rates, e.g., 
Leachman & Gascon (1988). Recent investigations on the scheduling of manufacturing 
systems have been carried out using a hierarchical approach; in particular, the work 
of Gershwin (1989), Perkins & Kumar (1989), and Kumar & Seidman (1990) are 
particularly relevant. The hierarchical approach is based on a time scaling in the 
activities occurring in a manufacturing system: a part processing may take about an 
hour; a setup operation may take a duration an order of magnitude longer, say 
10 hours; a machine failure may occur once in 200 hours. In these hierarchical 
production scheduling systems, the processing operations carried out by a workcentre 
are at the lowest level of the time scaling (fastest activities), and the setup activities 
are at the immediately higher level. The queueing models in this paper are utilised to  
analyse the system consisting of a versatile workcentre, along with its preprocess 
buffers, at these two lower time scales. However, in automated manufacturing an 
important aspect is the reduction of setup times through the use of mechanisms like 
automatic tool changers, and hence setup and operation times are typicalIy of 
comparable magnitude. We have basically drawn upon the relevant results in the 
vast literature on single server queues the GI /G/~  queue, and its variants, and from 
the literature on polling models (Takagi 1988, 1990) developed particularly in the 
context of computer communication. Relevant literature on these models are surveyed 
and referenced at the appropriate point in the next two sections. 

2. SingIe quew models 

We start with queueing models where the different part types share a single common 
queue, which may be of infinite or finite capacity (see figure 2). 
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/ common, infinite capacity queue 
AN Figure 2. The common queue model. 

2.1 MIG/~  queueing model 

- 
Ai . . . I  I J- 

The simplest model of the system is the well known M / G / ~  queue, widely described 
in the queueing literature. This entails that we make the following simplifying 
assumptions on the model: 

workcentre 

(i) 

(ii) 

(iii) 

All arriving workpieces share a common, infinite capacity queue in an FCFS 
fashion. 
The processing time is interpreted as the sum of the setup time and the actual 
machining time (i.e., the setup time is not considered explicitly). If Bi represents 
the modified processing time of a workpiece of part type i, then 

where p,,,,,, is the probability that a setup operation has to be carried out afresh. 
Since we have assumed exponential arrivals, p,e,,p,i is the same as the probability 
that the previous part type processed was not of type i, so pse,,,,i = 1 - (li/XjN= Aj) .  .. 
In terms of Laplace transforms, we have ~ ( s )  = Bi(s) x j-ySp.,,", i8i(s) + 1 - psetUp, ,I. 
The total arrival rate to the system is 1 = Z:=,Ai, and the service time of an 
arbitrary workpiece has the transform 

We are in effect analysing the M ,,..., MN/G, ,..., ~ , /1  queue by an M / G / ~  model. 
The analysis of the system now proceeds along the standard method for the M/G/l 
queue, which may be found in any standard text on queueing theory or stochastic 
modelling. A simple variant of this system, where each part type has distinct 
exponential arrival and service rates, i.e., the M, , . . . , MN/Ml,. . . , ~ , / 1  system, is discussed 
in an early paper by Ancker & Gafarian (1961). 

2.2 GIIG/~ queueing model 

2.2a Related work: Several investigations have been carried out on the approximate 
analysis of the GI/G/~ queueing system, which constitutes a general model for the 
single machine multiple part type processing system; see Shanthikumar & Buzacott 
(1980) for a survey of important results, and recommended methods applicable for 
specific parameter ranges. This is also useful in approximate analysis of non-product- 
form open general queueing networks of automated manufacturing systems, by 
adapting the product-form networks idea of decomposing the network into independent 
nodes corresponding to machining centres. Approximate analysis of general open 
queueing networks, and further refinements, have been proposed based on this 
independence concept by several authors - Kuehn (1979), Marie (1979), Whitt (1983), 
Shanthikumar & Buzacott (1981, 1985) and Bitran & Tirupati (1988, 1989). In 
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particular, the investigations of Shanthikumar and Buzacott, and Bitran and Tirupati 
are directed towards general open queueing network models of manufacturing 
systems, the former dealing with single product networks, and the latter with 
multi-product networks. The core of all these investigations is an appropriate analysis 
of individual workcentres processing multiple types of parts, and different processing 
times for different parts, by a GI/G/~ model under a multi-product assumption. In 
fact, several of the approximate models for this system have been developed especially 
for application to the analysis of networks of GI/G/~ systems with arbitrary routing. 
Shanthikumar & Gocmen (1983) have applied the principle of decomposition of a 
queueing network into individual independent nodes in developing a heuristic analysis 
of a closed network of GI /G/~  queues. In this subsection, we summarise the recent 
approaches to solving this model in the manufacturing context. 

2.2b Simplifying assumptions: The analyses in these investigations are carried out 
using the knowledge of the first two moments of the interarrival and service processes 
(the 'parametric analysis' of general queueing networks). In the context of the versatile 
machine-multiple part types case, the application of the GI/G/~ queueing model entails 
the following assumptions: 

e the setup time is not explicitly considered; it may be treated as part of the machining 
time. 

e the arrival and service processes, which can be different for different part types, 
have to be suitably combined. In the approach of the earlier papers, the system 
performance measures are obtained for a 'typical' part type, which is representative 
of all the part types; in a recently developed alternative approach (particularly 
Bitran & Tirupati 1988, 1990), performance measures are obtained for each part 
type individually by simplifying the system into a two-part type system: one part 
type is the particular part type of interest, and the second is an aggregate part 
type representative of all the other part types. 
the arrivals wait in an infinite capacity queue common to all part types, from which 
workpieces are taken up for machining on a first-come-first-served basis. 

2 . 2 ~  Approximations based on the aggregation of all part types into a single 'typical' 
part type: Let Aj and c$ denote respectively the mean rate and the squared coefficient 
of variation (s.c.v.) of the interarrival process for part type j ( l  Q j < N), and z j  and 
cfj denote the mean processing time and the squared coefficient of variation of the 
service process respectively. We have to approxifnate the system at  two stages to 
apply the model: (i) the parameters corresponding to the various part types have to 
be combined into those corresponding to a 'typical' part type; (ii) depending on the 
composite parameters obtained for the 'typical' part type, a suitable approximation 
of the GI /G/~  queue is to be applied. 

(i) Arrival process of the typical part type - The mean total arrival rate of the 'typical' 
part to the system is given by the sum of the arrival rates of individual parts: 1 = Zy= '., ?,. 

The S.C.V. of the arrival process is obtained by the hybrid approximation of Albin 
used by Whitt (1983) as 
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where w is a weight, given by 

(Here, p denotes the offered load, or the utilisation, of the machine, and is given by 
p = AT.) 

(ii) The service process of the typical part - The mean service time of the typical 
workpiece is given by T = (Zy=, ;ljzj)/A, and its squared coefficient of variation of the 
service process is obtained as (Whitt 1983) 

Depending on the values obtained for cg and c:, we can adopt the methods suggested ? 

by Shanthikumar & Buzacott (1980) and Whitt (1983) for the approximate analysis 
of the GI/G/~ system. We omit the mathematical details of these computations. See 
Whitt (1983) for a further discussion on approximate computation of distribution of 
the waiting time. In all these cases, the mean system lead time (waiting time in queue 
plus processing time) for a 'typical' part type is obtained from Little's Law as 
E [ R ]  = E [L]/A. 

The work of Shanthikumar & Buzacott (1980, 1981) and Whitt (1983) is based 
on representing a multiproduct, general open queueing network in terms of a single 
representative part type typical of all the part types; the service and arrival parameters 
at each node are modified to aggregate the behaviour of all the part types by this 
typical part type. The routing information of individual parts are usually deterministic; 
the aggregation methodology converts this into Markovian routing. (The deterministic 
routing of different part types is retained in an exact analysis if we model the system 
by special classes of queueing networks, like open product-form queueing network 
models (Baskett et a1 1975) or  the closely related quasi-reversible networks (Kelly 
1979); in this paper we are dealing with more general queueing models of individual 
machines (nodes) a network of which does not fall in these exactly solvable categories.) 

2.2d Approximate analyses explicitly considering distinct part types: Bitran & 
Tirupati (1 988) point out that the randomisation of deterministic routing of the various 
part types to Markovian routing in the aggregation process can lead to significant 3 

errors in the computation of system performance measures. They propose a refinement 
for computing the squared coefficient of variation of the departure process of a specific 
part type, say i, from a node (which is a GI/G/~ queue). To compute the S.C.V. of the 
departure process of part type i from a particular workcentre, we consider the following 
simplified view of each workcentre: consider the specific part type i, and an aggregate 
part type, which represents all part types other than i. The s.c.v. 
process of part i from the workcentre may be computed from 

cg(i) of the departure 

where the new term n(i) = z(i) + 1, where z(i) is the number 
aggregate type that arrive during an interarrival time of part 

of workpieces of the 
type i, c&, represents 

the S.C.V. of n(i). The difficult part is estimating the s.c.v. c&,. The authors propose 
three approximations for this purpose, which may be briefly stated as follows: (i) the 
arrivals of the aggregate product may be treated as Poisson; (ii) during any interarrival 
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period of the part type i (aggregate part type), the interarrival process of the aggregate 
part type (part type i) may be treated as Erlangian; and (iii) the arrival of part type 
i is treated as a random incidence in the arrival stream of the aggregate product; 
both the part type i and the aggregate part type have Erlang arrivals. Extensive 
numerical investigations by Bitran & Tirupati (1988) indicate that the proposed 
approximations provide significant improvements in accuracy over the aggregation 
approach previously employed. In a subsequent paper (Bitran & Tirupati 1989), they 
develop an approximate analysis for a single workcentre multiple-item system, where 
the arriving workpieces of the different part types have to form a batch of a given 
(fixed) size before service can be started. 

In a related paper, Whitt (1988) has developed the theory for the output process 
for a particular part type from a node, when that part type is in light traffic. The 
basic idea of the light traffic approximation for the departure process of a single part 
type from a node may be stated thus: "If the arrival rate of one class (part type) to 
some queue (machine) is a small proportion of the total arrival rate there, then the 
departure process for that class from that queue tends to be nearly the same as the 
arrival process for that class to that queue". This principle can be used in an 
approximate analysis of a general multiclass queueing network. A simplified characteris- 
ation of the departure process of a GI/G/l system with multiple arrival streams (part 
types) by a renewal process is developed by Albin (1986). 

2.3 Finite capacity queues 

Thus far we have not put any restriction on the capacity of the preprocess buffer 
queue. In real life manufacturing, the number of fixtures available is limited, and so 
is the space available to hold waiting workpieces in front of a machine. Hence, it is 
more realistic to assume a finite capacity for the preprocess queue. In the following, 
we summarise the results for finite buffer systems. 

2.3a M/G/l/N queue model: This is finite capacity analog of the M/G/~  model. We 
may think of the well known M/M/l/N system as an elementary version of this model, 
where all the part types are aggregated (logically) into one representative part type, 
which has exponential arrival and service in a single server system with a total buffer 
capacity of N, including the server. Basharin (1965) has analysed the finite queue 
analog of the case where each part type has distinct exponential arrival and service 
in a finite capacity queue, single server system, i.e., the M ,,... , M,/M,, . .. , M,/I/N. 
The general M/G/~/N system is analysed by Lavenberg (1975). An arrival that finds 
all the N buffer spaces full is assumed to be lost. Lavenberg presents an expression 
for the Laplace-Stieltjes Transform (LST) of the distribution of the queueing time in 
the system, in terms of the steady state probability of the imbedded Markov chain 
at the departure epochs, and the LST of the service time distribution. The relevant 
mathematical results are highly detailed, hence we omit them. 

2.3b The  G I / G / l / N  model: This is the finite queue analog of the previous model, 
representing an important real life issue, viz., the availability of only a finite number 
of buffer spaces to hold waiting part types in front of a workcentre. An analysis of 
this system will also be fundamental to an analysis of a network of finite capacity 
queues, i.e., general open queueing networks with blocking. 
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3. Multiqueue models 

We next turn our attention to queueing models, where each part type forms a separate 
queue, which are attended to by the versatile workcentre represented by a single 
server. Typically, the different part types are served in cyclic order, and each queue 
is assumed to have infinite capacity. Few results are available for the finite-capacity 
queues case. 

3.1 Cyclic server (polling) models with infinite buffer queues 

This model exhibits a separate queue for each part type. Workpieces of type i arrive 
with an exponential interarrival time or rate Ai. The service time of a workpiece of 
a part type is given by an independent random variable of general distribution, 
denoted by B,. The different part types are taken up for processing in the cyclic order 
1,2,. . . , N - 1, N, 1,2, etc. The processing of type i workpieces is preceded by a setup 
operation for part type i, given by a generally distributed duration R,, which depends 
on part i, but is independent of other system parameters. When the machine has served 
waiting workpieces of type i (according to the given service policy), it changes over 
to the next part type (i + 1) modulo N by initiating a setup for this part type. Such 
a cyclic server or polling model has been solved exactly for the mean waiting time 
in queue of each part type, for the following cases. 

(i) The service policy within a queue is the same for all the N part types, and can 
be exhaustive or gated. Within a queue, workpieces are processed in FCFS order 
(ii) The special case where K-limited-exhaustive discipline is applied to the system 
for all the N part types, under the assumption that all the N parts have identical 
parameters, i.e., same arrival, setup and processing times (i.e., the symmetric case). 

3.la Exhaustive service: The system may be solved for the mean waiting times as 
follows: let bi and hi2) denote the mean and second moment of the processing time 
for part i, B,. Let pi = li x bi be the utilisation of the machine by part type i, and let 
p = 2:' pi be the total utilisation of the machine (the utilisation values exclude the 
time spent on setups). The mean of the total time spent on setup in each cycle is 
R = ZF= lri,  and the variance of this time is A2 = Xy'V=l 8;. 

The system is stable, i.e., the queue lengths for each part type do not build up to 
infinity, if p < 1. 

The waiting time in queue of a type i workpiece is given by (Takagi 1988) 

E[W] = E[I;]/{~E[I~] ) + Aib1"/{2(1 - pi)), 

where Ii denotes the intervisit time for the queue corresponding to part i. The intervisit 
time is defined as the duration starting the instant the machine leaves queue i and 
ending the instant the machine finishes setup for part i in the next cycle. The mean 
E [I ,]  and the variance Var[Ii] of the intervisit time are given by 

where (rij}, 1 d i, j < N are the set of covariances for the station times of the queues 
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for part types i and j. The station time for queue i is defined as the time interval 
between successive instants the machine starts setup for parts i and i + 1. The values 
of the covariances rij are obtained by solving the set of the following O(N2) linear 
equations (Takagi 1988). 

and 

3.lb Gated service: We follow the same notation as in the exhaustive service case. 
The mean waiting times in queue are obtained by solution of a set of O(N2) linear 
equations. The mean waiting time for a workpiece of part type i is given by (Takagi 
1988) 

where Ci is the random variable denoting the cycle time for part type i, defined as 
the time interval between successive instants of setup initiation for part type i .  The 
expected value of the cycle time is independent of the part type and is given by 

E [C] = E[Ci  J = Rl(1- p). 

The condition for system stability is p < 1. 
To obtain E [ C : ]  = ( E [ C i ] ) 2  + Var [C i ] ,  we solve for V a r [ C i ]  from: 

The values {r i j ;  1 < i, j Q N )  are again the set of covariances of station times. Here 
the station time for part type i is defined as the time interval between the successive 
instants the setups for part types i and i + 1 are completed. The values of rij are 
obtained by solving the following set of linear equations (Takagi 1988) 

and 

3.lc Limited service: The limited service discipline has not been solved for the 
general asymmetric case .(the solution is known for the symmetric case, Fuhrmann 
& Wang 1988). Several approximate approaches have been proposed in the literature; 
nearly all of them deal with the K-limited discipline with limit 1 for all the queues 
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(since the maximum number of workpieces of a particular part type processed in a 
cycle is limited to one, the K-limited-exhaustive and K-limited-gated variants become 
identical); the work reported in Ibe & Cheng (1989), Boxma & Meister (1987) and 
Srinivasan (1988) are representative of the approximate approaches to this special 
case of the problem. Fuhrmann & Wang (1988) present bounds for the computation 
of the mean waiting times under the more general situation where the limit on the 
number served is different for different part types; these bounds are extended to 
provide approximations to compute the mean waiting times. The survey articles by 
Takagi (1988, 1990) summarise the recent approximate analyses. 

3.ld Bernoulli scheduling: The Bernoulli scheduling discipline constitutes a genera- 
lisation of the exhaustive and the K-limited-exhaustive service discipline with limit 1 
for all part types; when pi is 1 for all the N part types, it reduces to the exhaustive 
service, and when pi = 0 for all parts it is the K-limited service discipline of limit 1. 
In the symmetric case, i-e., all the N part types have completely identical parameters, 
Tedijanto (1990) has shown that the mean waiting time of a workpiece can be given by 

1 
E w l =  b(, + ( l  + R(1 + l b  - 2Abp) 

2 1  - p - 1 - p)) 

3.2 Cyclic server models with limited buffers 

These models represent one important class, the general version of which is as yet 
unsolved. However, the single-buffer case, where each part type has a single buffer, 
has been successfully analysed; the recent results are given by Takine et a1 (1988), 
and Ibe & Cheng (1989). The solution of the symmetric version requires solving 
0(2N-1) linear equations, and the general (asymmetric) version needs the solution of 
0(2N-1) linear equations. Tran-Gia & Raith (1988) present an approximate analysis 
for more general systems where each part type may have a finite queue of (distinct) 
finite capacity, under non-exhaustive service assumptions. Seidmann et a1 (1985) have 
analysed a related model, in which a single server (a manufacturing cell) processes 
different types of part types, according to a probabilistic schedule and 1-limited service 
discipline; but they assume that at  each service completion, a new workpiece is always 
available for each part type, i.e., no arrival process is explicitly considered; this 
assumption greatly simplifies the analysis. 

4. An example 

In this section, we consider the application of the various models to an example 
system - a single versatile machining centre processing three different part types. We 
restrict our attention to a few models due to space limitations. The mean values of 
the interarrival duration, setup time and processing time per workpiece for these part 
types are given in table 2. 

Since the assumptions underlying the various models are different, the results 
produced by these will also differ; we shall concentrate on mean lead time (response 
time), or, equivalently, the mean inventory level (queue length) for each part type, 
and the mean utilisation. 
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Table 2. Parameters for the example. 

Mean time for 

Part type Arrival Processing Setup 

1 10.0 3.0 15.0 

2 16.0 2.0 10.0 

4.1 MIGII  queueing model 

In this model, the analyst assumes that all part types arrive with exponential 
interarrival times. All the parts wait in a common, infinite capacity queue from which 
they are taken up for processing in an FCFS fashion. Setup times are ignored. The 
mean lead time obtained is for a 'representative' part type. Let us consider the mean 
response time when the service time of each workpiece is k-stage Erlang with the 
mean value given above. A simple calculation gives the mean queue lengths when 
the service time has k = 1,2,3 stages (table 3). 

A simple calculation gives the mean utilisations as p,  = 0.3, p, = 0-125, and 
p, = 0-25, and the total utilisation is p = 0-675. An elementary application of Little's 
Law gives the mean lead times. 

4.2 G I / G / ~  queue models 

We relax the exponential arrival assumption of the previous model and allow the 
arrival processes also to be GI. Other assumptions remain unchanged. The results 
are obtained for a typical part type which is representative of all the part types. 
Assume that the arrival and service processes of the three parts are all 1 ,2  or 3 stage 
Erlang. Table 4 summarises the mean queue length values. 

4.3 Cyclic server queueing models 

Let us take a more detailed view of the example. Let parts 1 and 2 be members of a 
group technology part family, and part 3 be a member of another group technology 
part family. The workcentre produces them in the order 1, 2, 3 so that part family 1 
is produced first, and then part family 2. Assume that arriving workpieces wait in a 
dedicated, infinite capacity queue. The processing of each part type is preceded by a 
setup for that part type. In such a case, the cyclic server multiqueue model of 5 3 is 

Table 3. Mean queue lengths, M/G/1 model. 

Service time is 

I-Stage Erlang ZStage Erlang 3-Stage Erlang 
(exponential) 
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Table 4. Mean queue lengths, GI/G/l model. 

Service process 

Arrival process l-Stage Erlang 2-Stage Erlang 3-Stage Erlang 

l-Stage Erlang 2.2442 1,8519 1.7642 

2-Stage Erlang 20543 1-6083 1.4897 

3-Stage Erlang 1.9919 1.5263 1.4126 

appropriate. Applying the exhaustive service policy would imply that all existing 
requirements of production for a particular part type are completed, and the machine 
changes over only when no further demand is present. Under the gated service policy, 
we process all outstanding demands for a particular part type that were present at 
the instant of setup completion. With limited service, we process each part until either 
a time limit expires or a maximum number has been processed, or  there are no further 
waiting workpieces of that part type. 

For simplicity, the setups are assumed to take an exponential duration. Let the 
machining times be k-Erlang for all parts; we consider k = 1,2,3. In table 5 we present 
the mean waiting times (this excludes the processing time) for each part type; the 
mean lead time is the sum of the mean waiting time and the mean processing time. 

The machine utilisation values for the different part types are the same as before. 
For the l-limited service discipline, the system is unstable, as an elementary check 
shows. 

4.4 Cyclic server model with single buffers 

Let there be N fixtures, one fixture each dedicated to each of the part types in the 
previous example; the infinite buffer assumption is no longer appropriate. We use the 

Table 5. Mean waiting times, multiquene model. 
- 

Service time is 
Exhaustive service 

Part type I-Stage Erlang 2-Stage Erlang 3-Stage Erlang 

1 47.66 45.96 45-39 

Service time is 
Gated service 

Part type l-Stage Erlang 2-Stage Erlang 3-Stage Erlang 



Stochastic analysis of versatile workcentres 

Table 6. Muitiquene, single buffer model. 

Performance measure Part 1 Part 2. Part 3 

Throughput 0.0224 0.0205 0.01 88 

Maching utilisation 0.0672 0.041 1 0.0939 

Blocking probability 0.7662 0.67 12 0.6244 
(Mean queue length) 

cyclic server model where each part type has exactly one buffer (the fixture). When 
a fixture is occupied by a workpiece, further arrivals of workpieces of the same type 
are prohibited (loss system); when the fixture is released, a new arrival can take place. 
Assume, for simplicity, that all setup and processing times are exponential; also, ignore 
the fixturing time, or treat it as part of the processing time. Due to the single buffer 
per part assumption, exhaustive, gated and limited service disciplines become identical. 
We are interested in parameters like throughput of the parts (parts produced per 
unit time), the utilisation of the machine and the probability of an arrival finding the 
corresponding buffer full and hence being lost, for each part type. Under the 
assumption of independent exponential arrivals for each part type, applying the 
PASTA property (Wolff 1982), the probability that an arrival finds the corresponding 
buffers are full (and is hence lost), is the same as the steady state probability that the 
buffers are full. This result will hold even if the setup and processing activities have 
general i.i.d. durations; they need not be exponential. For our example, owing to the 
single buffer assumption, the probability that the buffer is occupied is the same as 
the mean number of workpieces of a particular part type in the system. We present 
these performance parameters for our example in table 6. 

5. Conclusion 

We considered a series of stochastic models for the analysis of a highly capable 
machining centre processing different types of parts. The issues addressed include 
using a single aggregate representative part type versus explicitly considering multiple 
part types, inclusion or non-inclusion of setup times, single common queue versus 
multiple queues (one for each part type), finite capacity queues versus infinite capacity 
queues, and exponential versus general arrival and service processes. Table 7 compares 
the degree of detail captured by each of the two major modelling approaches 
considered in this paper - (i) the GIJG/~ queue and variants ($2), (ii) the multiqueue 
cyclic server queueing model and variants ($ 3). 

From a computational point of view, the GI/G/~ models are the simplest, since 
performance measures are easily determined by a straightforward computation using 
an explicit formula. The cyclic server systems (polling models with exponential arrivals) 
can be analysed by solving O ( N 2 )  linear equations. However, important variants like 
systems with mixed service, and systems with finite buffer capacities are solved only 
approximately. , 

The models considered in this paper can be used to analyse the performance of a 
single machine under varying demand rates, changing setup or processing times, or 
varying product mixes. In particular, the effect of introduction of new part types, or 
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Table 7. Comparison of the modelling approaches. 

Issue GI/G/l queue Multiqueue cyclic server 

Part types 

Setup time 

No, of queues 

Queue capacity 

Arrivals 

Processing 

scheduling 

Service policy 

All part types aggregated 
to a single representative 
part type 

Ignored 

One common 

Infinite (special cases like 
M/GI/I/N are solved) 

GI 

FCFS 

FCFS 

N distinct parts 

GI (explicit) 

One per part type 

Infinite (approximate 
solution for finite 
capacity case) 

Exponential (for exact 
solution) 

GI 

Cyclic service exactly 
solved; approximate 
solutions for others 

Exhaustive, gated, limited 

taking some part types out of production, on the lead times of parts already being 
manufactured can be studied. Besides, these models can form the building blocks of 
a more elaborate model of an AMS, consisting of several machines and material 
handling system equipment. Such a model of an AMS, will be typically solved by a 
decomposition approach (owing to the largeness of the system), by analysing individual 
equipment (e.g., deriving their flow equivalents) and combining these individual results 
into those of the entire system. The models proposed in this paper will enable explicit 
consideration of multiple part types and setup activities. Further, the introduction of 
the issues of machine failures and repair in the model, in the spirit of queueing systems 
with server vacations, will enhance the accuracy of the model. Development of solution 
methodologies for models of the AMS incorporating these features is part of our 
continuing work in this area. 

References 

Albin S L 1986 Delays for customers from different arrival streams to a queue. Manage. Sci. 32: 329-340 
Ancker C Jr, Gafarian A V 1961 Queueing with multiple poisson inputs and exponential service times. 

Oper. Res. 9: 321-327 
Basharin G 1965 A single server with a finite queue and items of several types. Theory Probab. Its Appl .  

(USSR) 10: 261-274 
Baskett F, Chandy K M, Muntz R R, Palacios F G 1975 Open, closed and mixed networks of queues 

with different classes of customers. J. Assoc. Comput. Mach. 22: 248-260 
Bitran G R, Tirupati D 1988 Multiproduct queueing networks with deterministic routing: Decomposition 

approach and the notion of interference. Manage. Sci. 34: 75-100 
Bitran G R, Tirupati D 1989 Approximations for product departures from single-server station with batch 

processing in multi-product queues. Manage. Sci. 35: 851-878 
Boxma 0 J, Meister B W 1987 Waiting-time approximations for cyclic-service systems with switchover 

times. Performance Eval. 7: 299-308 
Buzacott J A, Shanthikumar J G 1985 On approximate queueing models of dynamic job shops. Manage. 

Sci. 31: 870-887 



Stochastic analysis of versatile workcentres 317 

Dobson G, Karmarkar U S, Rummel J 1987 Batching to minimise flow times on one machine. Manage. 
Sci. 33: 784-799 

Fuhrmann S W, Wang Y T 1988 Analysis of cyclic service systems with limited service: Bounds and 
approximations. Performance Eval. 9: 35-54 

Gershwin S B 1989 Hierarchical flow control: A framework for scheduling and planning discrete events 
in manufacturing systems. Proc. IEEE 77: 195-209 

Ibe 0 C, Cheng X 1989a Approximate analysis of asymmetric single-service token-passing systems. IEEE 
Trans. Commun. 37: 572-577 

Ibe 0 C, Cheng X 1989b Performance analysis of asymmetric single-buffer polling systems. Performance 
Eval. 10: 1-14 

Kelly F P 1979 Reuersibility and stochastic networks (Chichester: John Wiley and Sons) 
Kleinrock L, Levy H 1988 The analysis of random polling systems. Oper. Res. 36: 716-732 
Kuehn P J 1979 Approximate analysis of general netkorks by decomposition. IEEE Trans. Commun. 27: 

113-126 
Kumar P R, Seidman T I 1990 Dynamic instabilities and stabilisation methods in distributed real-time 

scheduling of manufacturing systems. IEEE Trans. Autom. Control. 35: 289-298 
Lavenberg S S 1975 The steady-$tate qukueing time distribution for the M/G/I finite capacity queue. 

Manage. Sci. 21: 501-506 
Leachman R C, Gascon A 1988 A heuristic scheduling policy for multi-item single-machine production 

systems with time-varying, stochastic demands. Manage. Sci. 34: 377-390 
Marie R A 1979 An approximate analytical method for general queueing networks. IEEE Trans. Software 

Eng. 5: 530-538 
Perkins J R, Kumar P R 1989 Stable, distributed, real-time scheduling of flexible manufacturing/assembly/ 

disassembly systems. IEEE Trans. Autom. Control 34: 139-148 
Seidmann A, Schweitzer P J, Nof S Y 1985 Performance evaluation of a flexible manufacturing cell with 

random feedback flow. Int .  J. Product. Res. 23: 1171-1 184 
Shanthikumar J G, Buzacott J A 1980 On the approximations to the single server queue. Int.  J. Product. 

Res. 18: 761-773 
Shanthikumar J G, Buzacott J A 1981 Open queueing network models of dynamic jobshops. Int. J. 

Product. Res. 19: 255-266 
Shanthikumar J 6, Gocmen M 1983 Heliristic analysis of closed queueing networks. Int. J. Product. Res. 

21: 675-690 
Srinivasan M M 1988 An approximation for mean waiting times in cyclic server systems with nonexhaustive 

service. Performance Eval. 9: 17-33 
Takagi H 1988 Queueing analysis of polling models. ACM Comput. Surv. 20: 5-28 
Takagi H 1990 Analysis of polling systems: An update. Stochastic analysis of computer and communication 

systems (Amsterdam: North Holland) 
Takine T, Takahashi Y, Hasegawa T f988 kxact analysis of asymmetric polling systems with single buffers. 

IEEE Trans. Commun. 36: 11 19-1 127 
Tedijanto 1990 Exact results for the cyclic-service queue with a Bernoulli schedule. Pevfo~zance Eval. 11: 

107-115 
Tran-Gia P, Raith T 1988 Performance analysis of finite capacity polling systems with ilonexhaustive 

service. Perjiarmance Eval. 8: 1-16 
Whitt W 1983 The queueing network analyser. Bell Syst. Tech. J .  62: 2779-2815 
Whitt W 1988 A light-traffic approximation for single-class departure process from multi-class queues. 

Manage Sci. 34: 1333-1346 
Wolff R W 1982 Poisson arrivals see time averages. Oper. Res. 30: 223-231 


