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Abstract. Practical applications of integrated optics require understanding of light propaga- 
tion in dielectric waveguides ofparious geometries and calls for elegant and quick methods 
of analysis. In this paper, we use beam propagation method to analyse some integrated optic 
waveguiding elements such as waveguide with bend and branching waveguide. The method 
is extended to cylindrical co-ordinates, so that structures with circular symmetry can be 
easily solved. We first present a general beam propagation method algorithm, followed by 
results taking typical values for various parameters. Our studies show that the efficiency of 
the method depends on the z-propagation steps and on the number of points chosen for the 
Fourier transform. The algorithm developed can be used to analyse many other integrated 
optic structures and to study the effect of other input beam profiles. 
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1. Introduction 

Beam propagation method is basically a numerical modelling method for the 
propagation of an optical beam through a medium with small variations of refractive 
index (Feit and Fleck 1978; Van Roey et a1 1981,). The method consists of propagating 
the input beam over a small distance through a homogeneous space and then 
correcting for the refractive index variations seen by this beam during the propagation 
step. In this paper we give an algorithm for generalized beam propagation method 
(BPM) and apply iL to some integrated optic structures and optical fibers. To solve 
the wave equation of the homogeneous medium, the Fourier transform pair has to 
be evaluated. Instead of using fast Fourier transform (FFT) directly, it is suggested 
that FFT combined with Simpson's 113 rule can be used which improves the accuracy. 
Also, for optical fibers the Hankel transform method can be used instead of the 
two-dimensional FFT. 

2. Theory 

The propagation of light in a waveguide can be described by the wave equation 
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where ko = o / c ,  n the refractive index and the w circular frequency of light. The 
solution to equation (1) at z = AZ may be written in terms of field at z = 0 as, ? 

$(x, Az) = exp [ - iAz{V: + k&2}1'2]$(x, Q), (2) 

where V:  = d2/ax2. The solution J/ can be expressed in the form, 

where k = noo/c and no is the refractive index of the homogeneous medium. can be 
written in the symmetrized split operator form to second order Az (Feit and Fleck 
1976) as 

- iAz 
x exp --- V' I} i ( x ,  0 )  + ~ ( A z ) ~ ,  { 2 [(V++k2)112+k 

where x = ko * [n(x) - no]. The operation 

is equivalent to solving the wave equation 

with $(x,O) as an initial condition. Van Roey et a1 (1981) and Van der Donk (1982) 
have however used a simple correction factor 

$(x, z ,  + Az) = q(x, zO + Az) exp ( - ik, * An(x) * Az), 

where An(x) = n(x) - no and q(x, z)  satisfies, 

and ~ ( x ,  2,) = $(x, 2,). Equation (7) can be solved by Fourier transform pairs (Lee 1986) 

where b = ( k i n t  - k;)'l2. Equation (8) is substituted in (6) to get the desired field II/ at 
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z, + Az. It is known that the error introduced while using (4) is - Az3 and while using 
(6) is -Az2. Equation (8) has to be solved in both the cases. To solve (8) and (9), 
Simpson's 1/3 rule can be used. But it would need 2N + 1 complex multiplicatioi~s 
and additions for each value of k, where 2N is the number of samples taken for 
integration. If ii(k,) is calculated 2N times, then 2N(2N + 1) complex multiplication 
and addition will be needed. To reduce the number of complex multiplications, 
Simpson's 1/3 rule is combined with FFT so that the total number of complex 
multiplications reduces to 4Nlog N (Appendix A). Thus we get the accuracy of 
Simpson's 1/3 rule and the speed of FFT at the same time. 

3. Extracting mode data 

The complex field amplitude can be expressed as a superposition of orthogonal mode 
eigen functions, 

where n is a mode index, j the distinguishing members of degenerate group and Anj 
is determined by the input field 11(x,O); The mode propagation constant /?, can be 
determined from computation of correlation function, (Feit and Fleck 1978) 

Using (1 I) and the orthogonality sf mode eigen functions, (12) reduces to, 

PI (2) = C ( An 1 exp ( - ifl,z). 
n d  

Multiplying (13) by the Hanning window function, 

w(z)= 1-cos(2~0*7T*z/Z1) 0 < = z  < =Z1 
=O otherwise 

and taking Fourier transform w.r.t. z, 

The eigenvalue /In can be determined by locating the local maxima of P1(P). 
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4. Extensions of BPM to cylindrical coordinates 

Consider the wave equation in cylindrical co-ordinates. 

which can be written as (Feit and Fleck 1976) 

@(r, 0, Z) = exp (- i(V2, + kin2)lI2z)@(r, 0,O) 

where V: = a2/ar2 + i/r ajar +(1/r2) a2/aB2 (V; + k$n2)'I2 can be written in the form, 

If n in the first term of the right hand side is approximated by no, where no is the 
refractive index of the unperturbed medium, equation (1 8) becomes 

P [V: + kin@ 'I2 + koAn(r) from (1 8) 

where An(r) = n(r) - no. Substituting in (17),, 

$(r, 6, z) = exp [ {  - iz(V$ + kini)'12} - {iz * k, * An(r) )]$(r ,  0.0). (19) 

By neglecting the error due to non-commutation of operators, (19) can be  written as, 

@(r, 6, Z) r [exp [ - i z ( ~ $  + kgn;) '12]$(r, 0, O)] exp [ - iz * ko * An(r)] 

2 4(r, 0, Z) * exp [ - iz * koAn(r)], (20) 

where $ satisfies the wave equation 

with $(r,'O, 0) as initial condition. Let 

4 = R(r, z )  * [ A  cos me + B sin me]. 

Then, (21) becomes, fl 

d2R 1aR a2R -+--+-+ 
dr2 r ar dz2 

Taking the Hankel transform, 
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where 
fa, 

E(a, z) = R(a, 0) exp (- jpz) where p = (kgn; - a2)'I2. 

Taking the inverse Hankel transform, 

R(r, z) = loa, [@a, 0) exp (- jpz)]a~.(ar) da. 

For structures such as weakly guiding single-mode fibers, we can set m=0. 

R(r, z) = Som CR(a, 0) exp (-j/3z)]a~~(ar) da 

E(a, 0) = Soa, R(r, z)rJo(ar) dr. 

To evaluate (26) and (27), the Fast Hankel transform technique is used (Appendix B). 
Hence 4 is calculated and substituted in (20) to get the desired field. 

5. Results 

To verify the above equations, a step index fiber is considered. The fiber is excited 
with step input, i.e. the field within the fiber is uniform and is zero outside. The fiber 
has the following parameters: core refractive index of 1-45, cladding refractive index 
of 1.44, a radius of 2 pm and a wavelength of 1.32 pm. To find the eigenvalues, instead 
of (12) 

is used. It is found to excite only single-guided mode P ,  =6-868 rad/,um. The 
propagation constant obtained after solving the characteristic equation for weakly 
guiding fibers is, 6, = 6.8676 rad/pm. 

To find the field in the integrated optic structures, we have used the simple correction 
factor of (6) instead of (4) since the propagation distance is 1000 pm. 

From figure l(a), it can be seen that the given power input is carried through bent 
guiding region. The bent waveguide is excited as shown. Power output is calculated 
for different angles. Power in the bent waveguide for different angles of bend is shown 
in figure l(b). For angles greater than lo0, most of the power is radiated out of the 
waveguide. 

Figure 2 shows the field in a branching waveguide. Yajima (1973) experimentally 
showed that modes incident on an asymmetric planar-dielectric branching waveguide 
with a shallow taper propagate such that the mode power is transferred to one arm 
of the branch or the other. The branching waveguide acts like a power divider 
(non-adialhtic) when tapers are steep and it acts like a mode-splitter (adiabatic) when 

.9 
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Figure la. Field in a bent waveguide for Gaussian input with lle depth 2pm. n,=21398. 
An = 0.1 %. b. Power in a bent waveguide for different angles of bend. 
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Figure 2a. Field in a branching waveguide with the fundamental mode excitation into arm 
1. The angle is 1 / 2 0  radians. The guide thickness for arm 1 and arm 2 is 8 ,um and 2pm 
respectively. For arm 1 and arm 3, the refractive indices (RI) within the guide are 2-155 and 
2.1398 outside. For arm 2, RI is 2.155 within the guide on the right side and 2.1398 on the 
left side. 
Figure 2b. Field in a branching waveguide with the TE03 mode excitation into arm 1. The 
parameters are same as figure 2a. 
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tapers are gradual. Figure 2(a) shows the field in a branching waveguide for shallow 
taper. The angle of bend is 1/200 radians. The fundamental mode is launched into 
arm 1 of the waveguide. The thickness of arm 2 is made much less than that of arm 
3 so that propagation constant for fundamental mode in arm 2 is less than that of 
arm 3. For 1= 1.32pm, != 10.2190 rad/pm for arm 2 and P =  10-2494 rad/pm for 
arm 3 for the fundamental mode. In this case, TEOl mode in arm 1 is converted to 
the TEOl mode in arm 3. Hence, it can be seen that TEOl mode in arm 1 chooses 
the arm of larger propagation constant for TEOl mode. We can see from 2(a) that 
power launched in arm 1 is coming out of arm 3. 

Figure 2(b) shows the field in the branching waveguide with TE03 mode excitation. 
The propagation constant for arm 1 is, 

p,, = 10.2524 rad/,um for TEO-1 mode, 
p,, = 103372 rad/,um for TE02 mode, 
p,, = 10.21 32 radlpm for TE03 mode. 

For arm 3, 

pal = 1092494 rad/pn for TEOl mode, 
p3, = 10.2258 rad/pm for TE02 mode, 
p3, =t 10.1924 rad/pm for TE03 mode. 

For arm 2, 

/I,, = 10.2190 radlpm for TEOl mode. 

It can be seen that TE03 mode of arm 1 is converted into TEOl mode of arm 2 since 
the propagation constant for TEOl mode of arm 2 is closest to that for TE03 mode 
of arm 1. 

Figure 2(c) shows the field in the branching waveguide when the tapers are steep. 
The angle of bend is 1/50 radians, Now, the waveguide acts like a power splitter. 
After doing the modal analysis, it is found that, in arm 3, the odd mode with 
p= 10.2257 rad/pm is excited. In arm 2, the even mode with P= 10.219 rad/prn is 
excited. The ratio of power in arm 2 to arm 3 is found to be 36:64. 

Beam propagation method is a powerful tool for the numerical modelling of scalar 
wave propagation through media with arbitrary but slow and small variations in 
refractive index. For structures with circular symmetry, the Hankel transform method 
can be used which reduces the computational time against the two-dimensional 
Fourier transform. 

Appendix A 

Multiply equation (7) by exp (-jr 2nkxIT) and integrate w.r.t. x with limits - T/2 to 



356 Shiua Kurnar, T Srinivas and A Selvarajan 

T/2 where T is a large number such that 

where 
i f T / 2  (A3\ 

ak, z)  = 1 J q(x, z) exp ( - i2nkx/T) dx. tA 
- T / 2  

f (k ,  Az) = ij(k, 0) exp ( - jpkAz) where f i k  = [(kin@ - ( 2 ~ k l T ) ~ l  ' I 2 .  643) 
d i L 

i (x ,  Az) = q(k, 0) exp (- jp,Az) exp (i2nkx/T), 
k = - L  

where 2L is the total number of prominent Fourier spectral components. To evaluate 
(A2), Simpson's 113 rule is used. Let h be the interval between samples and 2N be 

1 

the total number of samples. Then (A2) can be written as, -I 
r' 

where w(x) = q(x, 0) exp (- j * Znk* x/T). Replacing the continuous variable x with a 
discrete variable x = (T * n/2N) - T/2 (A5) can be written as, 

exp (jnk) [ ( - i2nkn) 
f (k$ O) = 6N 4'0 Vnexp 2N 

odd 

even, f 0,2N 

3! 
Putting m = (n - 1)/2 for the odd terms and m = (n - 2)/2 for the even terms, we get 

Using FFT algorithms (Oppenheim and Schafer 1975) for summations in (A7), i j  can 
be evaluated. Each FFT takes 2N log N complex multiplications. Therefore, the total 
complex multiplication will be 4N log N. 
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Appendix I3 

I 
i The fast Hankel transform (Siegman 1977) reduces the effort required to calculate 

Bessel functions for every iteration. r and a of (27) can be replaced by, 

I The Hankel transform, 

d ( a )  = Jo(ctr)arR(i) dr, 1: 
* i.e. 

w 

@a) = 9(1) = 1 j(x + y ) f ( x )  dx, 
-cQ 

( 8 4 )  
* where 
- j(r) = J o ( ~ o ~ o  exp ( P ~ ) ) P ~ o ~ o  exp (pr). 

& 035) 
This change of variable may be called Gardner Transform (Gardner et a1 1959). Taking 
the Fourier transform of (B4), 

= J(k)  * F( - k). 

where J(k)  and F(k) are the Fourier transforms of j and f respectively. Finally, g(y)  
can be found by taking the inverse Fourier transform of G(k). 

Thus, the Hankel transform of R(r)  requires an FFT on f ( x ) ,  FFT on j(x), and an 
inverse FFT to get g(y) or E(a). The Fourier transform of the Bessel function needs 
to be obtained only once. Hence, the calculation of Bessel function for every iteration 
is avoided. 
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