Support for this project was provided by The Conservation Agency, The Texas Herpetological Society, H. Lavy Stroutt Community College, and Texas Tech University. We thank Marc Hayes for helpful comments on a previous version of this manuscript. This is manuscript T-9-1027 of the College of Agricultural Sciences and Natural Resources, Texas Tech University.

Submitted by JENNIFER OWEN and GAD PERRY, Department of Range, Wildlife, and Fisheries Management, Texas Tech University, Box 42125, Lubbock, Texas 79409-2125, USA (e-mail: gad.perry@ttu.edu); JAMES LAZELL, The Conservation Agency, 6 Swinburne Street, Jamestown, Rhode Island 02835, USA; CLIVE PETROVIC, H. Lavy Stroutt Community College, PO Box 3097, Road Town, Tortola, British Virgin Islands; and JIM EGELHOFF, BVI Pest Control, PO Box 1109, Virgin Gorda, British Virgin Islands.

PEDOSTITES TUBERCULOSUS (Malabar Tree Toad) ADVERTISEMENT CALL AND DISTRIBUTION. Advertisement call patterns of anurans provide insights into speciation, territoriality, evolution, and phylogeny as these patterns reveal the species identification and motivation to mate (Bridges and Dorsac 2000, Copea 2000:587-592, Emerson 2001 in Ryan [ed.], Anuran Communication, pp. 36-43 Smithsonian Inst Press Washington, D. C.) Anuran acoustics have been studied for 20 of the 113 species known from Western Ghats (Gururaj 2004, Sahyadri Mandooka: Amphibians of Western Ghats; Kadadevaru and Kamamadi 2001 Cur Sci 80:1486-1487, Kuramoto and Joshy 2001 Cur Herpetol 20:85-95) Herein we report on advertisement call, explosive breeding behavior, and distribution of *Pedostites tuberculatus*, endemic to Western Ghats.

Pedostites tuberculatus is a medium-sized tree toad (mean SVL = 37.18 ± 0.44 mm; range: 36-38 mm; all male, N = 4, Fig. 1). Individuals have a distinct sub-gular vocal sac. Calls of four individuals (ca. 1.3 m above ground) were recorded at 15-minute intervals using an Olympus digital voice recorder W-10 as Differential Pulse Code Modulation at 15 kHz. Calls were recorded less than 30 cm from the specimen amidst evergreen-semi-evergreen forest (RH 97%, 23 °C) adjacent to a small perennial stream (marked in Fig. 2).

Calls were single and chorus, and antiphonal, heard for a month with the onset of southwest monsoon (June 2004). Chorus calls were synchronous, starting with an individual's initiation. Single calls of *P. tuberculatus* were analyzed as per Littlejohn (2001, in Ryan [ed.], Anuran Communication, pp. 102-120. Smithsonian Inst Press Washington, D. C.). Each call lasted for 3-7 sec, and had 14-37 pulse groups (PG) of 3-11 pulses with the domination of 4-8 PG, of which PG 1-2 (N = 16) had a large period (145 ± 21 ms) and interval (117 ± 22 ms) in the entire call series. Pulse frequency was 12.87-44.67 (34.32 ± 3.83) PG per was 61-134 ms. Amplitudes of the first and last pulses of the first and last pulse groups were low compared to others. Dominant frequency was 3782 ± 50.38 Hz. Pulse groups sounded like *Shrirr Shirrirr Shirrirr*.

Call structure of *P. tuberculatus* varies considerably from other bufonids in Western Ghats (Kamamadi et al. 1995, Adv Zool 16:5-11). Mean pulse rate of *Bufo melanostictus* was twice that of *P. tuberculatus*. However, similarity was noticed between the pulse rates of *B. fergusoni* and *P. tuberculatus*. The dominant frequency in *B. melanostictus* was 1450 Hz, in *B. fergusoni* it was 3175 Hz, and in *P. tuberculatus* 3782 Hz. Synchronous calls in *B. americanus*, *B. bombina*, *B. variegata*, *B. melanostictus*, and *B. fergusoni* are attributed to explosive breeding behavior (R. T. Duellman and Trueb 1986 The Biology of Amphibians. McGraw-Hill Book Inc., New York. 670 pp.; Kamamadi et al. 1995, op cit.). The same can be implied for *P. tuberculatus* which has a similar call pattern. Even though its presence was predicted (Biju 2001, Indian Soc. Cons. Biol. 1:1-24; Das and Whittaker 1998. Herpetol. Rev. 29:173), there are no earlier reports of *P. tuberculatus* from Karnataka spanning over 400 km of Western Ghats (earlier reports are marked in Fig. 2). The new location is ca. 333 km N of Silent Valley (least southern range) and 222 km S of Cotegao Wildlife Sanctuary (least northern range).

We thank the ISRO-IISc-Space Technology Cell, the Ministry...

Fig. 2 Reported sightings of *Pedostites tuberculatus* in Western Ghats.
of Environment and Forests, GOI; Indian Institute of Science for financial and infrastructure support. We thank the Karnataka State Forest Department for permission and support during field work (PS PCCF WL CR-38/2004-05). We thank Sameer Ali, Vishnu, and Lakshminarayan for their assistance during field investigations and Sudhiria, Jobby Joseph, and Sreekanta for valuable suggestions on acoustics.

Submitted by K. V. GURURAJA (e-mail: gururaj@example.com) and T. V. RAMACHANDRA, Energy and Wetlands Research Group Centre for Ecological Sciences, Indian Institute of Science, Bangalore – 560 012, India

PRHYNOHYAS VENULOSA (Rana Lechera) LARVAL CANIBALISM. During the nights of 23 May and 4 June 2004, in a permanent pond in the Sierra de Perijá, Zulia state, Venezuela, we found several dead *Prhynohyas venulosa* tadpoles (Stage 39, Gosner 1960). Herpetologia 16:143–190) being consumed by many conspecific tadpoles of similar size. Larval cannibalism in hyliid frogs has been previously reported for *Hyla rosenbergi* (Klug 1818 Misc. Publ. Mus. Zool. Univ. Michigan 160:1–170) and *H. fabor* (Sérigo and Asséno 1999 Herpetol. Rev. 30:162), and conspecific egg predation by tadpoles in *P. reticulata* (Schiesari et al. 2003 Copeia 2003:263–272). Although the natural history of *P. venulosa* has been studied (Zweifel 1964. Copeia 1964:201–208), cannibalism has not been recorded. This is the first report of cannibalism in *P. venulosa* tadpoles. Some tadpoles were reared through metamorphosis to assure the identity of the material; these were deposited in the Museo de Biología de la Universidad del Zulia (MBAUZ-A-0222).

Submitted by EDWIN INFANTE RIVERO, La Universidad del Zulia, Facultad Experimental de Ciencias, Museo de Biología de la Universidad del Zulia, Sección de Herpetología, Apartado Postal 526, Maracaibo 4011, Venezuela (e-mail: EdwinInfante@embraze.com); and FERNANDO ROJAS-RUNJAIC, Museo de Historia Natural La Salle, Sección de Herpetología, Apartado Postal 1930, Caracas 1010-A, Venezuela (e-mail: rojas_fernando@hotmaill.com)

RANA CASCADEAE (Cascades Frog) TADPOLE PREDATION Observations on anuran tadpole predation by birds is becoming more common (Bolítho and Retallick 1996 Herpetol. Rev. 27:140–141; McAlpine et al. 2001 Herpetol. Rev. 32:183–184; Castanho 2001 Herpetol. Rev. 32:103, Crump and Vaira 1991 Herpetologica 47:316–321). Furthermore, corvids have been documented preying on anuran tadpoles (Beisswenger 1981. Copeia 1981:459–460). Here I report predation on tadpoles of *Rana cascadeae* by the Clark’s Nutcracker (*Nucifraga columbiana*), a small corvid, observed in the Trinity Alps Wilderness, Trinity County, California, USA (40°55′30″N, 122°52′56″W, elev. 2195 m). These events occurred within 20 minutes during observations on 8 Oct 2004, initiated at 1740 h. Two *N. columbiana* were observed perching in trees near a drying pond (5 cm depth and 2 m² surface area) containing a high concentration of *R. cascadeae* and Pacific Treefrog (*Hyla regilla*) tadpoles and metamorphosed individuals. I observed the birds with binoculars from a distance of 15 m. Shortly after observations began, both *N. columbiana* flew to the pond and began probing their beaks into the water. Each *N. columbiana* successfully captured a single *R. cascadeae* tadpole. Since *R. cascadeae* much larger than *H. regilla* tadpoles, I was confident of a positive identification of tadpole species. Each bird then flew back to tree where initially observed and consumed the tadpoles. One bird returned to the pond four minutes later and seized three more *cascadeae* tadpoles, this time consuming them at the pond's edge.

Nucifraga columbiana typically relies on cached conifer seeds as a main source of nutrition for winter survival and breeding (Vander Wall and Balda 1977 Ecol. Monogr. 47:89–111). During the short autumn season in sub-alpine environments, many larval water bodies containing amphibian larvae become very shallow or dry completely. Drying lentic water bodies can create high concentrations of amphibian larvae that become available as a food resource to terrestrial predators at the littoral margin of *cascadeae* larval and, possibly recent metamorphs, may prove an important nutrition subsidy for *N. columbiana* just prior to onset of winter.

Submitted by JUSTIN M. GARWOOD, Department of Wildlife Management, Humboldt State University, Arcata, California 95521, USA, and Redwood Sciences Laboratory, 1700 Bayview Drive, Arcata, California 95521, USA; e-mail: jg18@humboldt.edu

SCINAXACUMINATUS (Mato Grosso Snouted Treefrog) PI cATION. The hyloid *Scinax acuminatus* is distributed in south Mato Grosso and Mato Grosso do Sul states in Brazil, Pará, Bolívia, and northwestern Argentina (Frost 2002 Amphibian Species of the World: An Online Reference V2 2). Despite this external distribution, life history data for this species are scarce. On 15 May 2005, at 13 h, we found an adult *S. acuminatus* (37.74 mm SVL 3.5 g) in the stomach of the colubrid snake *Leptodon annulus* (750 mm SVL: 27.4 g) in a *Ficus* sp. in the Brazilian Pantanal Nhumirim Ranch (18°59′S, 56°40′W), Mato Grosso do Sul. After regurgitating the frog (deposited as CECH 3553 in Cole Zoológica de Referência do Campus de Cuiabá), the snake measured and released. That night many individuals of this frog and snake were found active in the same *Ficus* tree and in palm *Attalea phalerata*, suggesting that *S. acuminatus* might commonly preyed upon by *L. annulus* in the Pantanal.

Submitted by DRÁUZIO H. MORAIS and ROBBON ÁVILA (e-mail: robsonavila@uin.ufms.br), Departamento Ciências do Ambiente, Laboratório de Zoologia, Campus Pantanal, Universidade Federal de Mato Grosso do Sul Av. Branco, 1270, Caixa Postal 252, CEP 79301-970 Cuiabá, Brazil

TURLIES

ACTINEMYS MARMORATA (Western Pond Turtle). NATIONAL ACTINEMYS marmorata historically ranged from Oregon to Mexico west of the Cascade-Sierra axis (Eins et al. 1994 Trips 37(1), 2006 of the United States and Canada Smithsonian Institution Ph-