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Abstract

A new Kinetic Rotationally Invariant Method for Euler equations (KRIME) based on
least squares is described on arbitrary grids. Unlike LSKUM, the new method does not split
the stencil for achieving upwinding but uses the full stencil. Upwinding is achieved in a
novel way which is possible due to the kinetic framework. The method can be applied to

any system of conservation laws which have a kinetic representation.

1 Introduction

The LSKUM of Ghosh [5] is an upwind method for Euler equations on arbitrary grids. This
method has been shown to work on arbitrary distribution of points and for a variety of flow
situations [9]. Upwinding is enforced at the level of kinetic theory by splitting the velocity
space and the stencil. The splitting of the stencil may lead to problems due to insufficient
number or absence of points in a half stencil. Though this problem can be solved by stencil
augmentation it is still advantageous to have a grid-free method which does not require such
correction of stencil. Hence it is pertinent to ask the following question.

Question: Is it possible to develop a numerical method for the Euler equations which,

—_

is grid-less,

2. is upwind,

3. uses full stencil,

4. is multi-dimensional.

There are two methods known to the authors which satisfy some if not all of these conditions.
These are the LSFD-U of Balakrishnan[1,2,7] and the gridless method of Morinishi [6].
Both these approaches do not make use of the kinetic formalism and can be used either in
the framework of flux-vector splitting or flux-difference splitting. Here, we are interested
in exploiting the connection between the Boltzmann equation and the Euler equations in
developing a new method which satisfies all the above four conditions. We also establish
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Figure 1: Finite volume definition

the rotational invariance of the method which is a requirement of any genuinely multi-
dimensional upwind method. The scheme is first described in one-dimension together with
analysis of the consistency of the scheme. The extension to two-dimensions is then given
which is non-trivial. Numerical results are presented only for the two-dimensional case.

2 Finite volume schemes

Consider a finite volume approximation of a scalar conservation law

ou -
4 V.F=
6t+ 0

Assume that the data is stored at the vertices of a grid. For a node o, we can construct a
finite volume {2 using the nodes 1,2, 3,4, 5,6 as shown in figure (1). The integral form of the

2/udv+/ F.7dS =0
ot Jq 50

which for the finite volume can be written as

B 6 o
a/QudvJr;/ezf-nds_o

where e denotes an edge of the finite volume. A simple way to evaluate the integrals in the

conservation law is

above equation is to use trapezoidal rule

— ]. — —
F-#dS w~ S[F. + Feia] - 2eS.

e
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with the convention that
(F )7 = (F - i)

Such a scheme would correspond to central differencing which is known to be unstable for
hyperbolic problems since they do not have the upwind property. To derive a stable scheme,
the concept of dual finite volume is used. One example of a dual cell is shown in figure (1)
which is formed by the perpendicular bisectors of the lines joining the vertices. The integral
form of the conservation law is now applied to the dual cell. The fluxes across the edges
12", 2'3', ...., have to be evaluated. For the dual cell the data is discontinuous across each
edge and a flux-vector or flux-difference splitting method, which are based on some upwind
principle, is used to evaluate the flux. We see that the use of dual cells stabilizes the scheme
by the introduction of discontinuities. In the present work which is based on least squares, a
similar situation arises. In order to introduce some upwinding the data on the given stencil
is transferred onto a dual stencil. The exact details are given in section (4).

3 One Dimensional Case

Consider a one-dimensional arbitrary distribution of points and let o be a typical node, with
its connectivity! C, = {i : 1 <4 < N,}, which we call the primary stencil. For later use, we
introduce the following notation: £, = {i € C, : z; < z,} and R, = C, — L,. Let f be a
scalar function specified at these nodes and let I denote the mid-point of the line segment
oi. We will call the set of all such points I obtained from a primary stencil to form the dual
stencil. Using Taylor’s formula, we can write the Taylor’s series for the exact value of f at
I, denoted by ff, as,

. df Azx? (d%f
fI _fo+A£L'I (E)O-’_—Z! (@ o+ .....

Let us retain terms upto order [ in the above formula, and define an error,

df Az? (d2f Azt (dlf
fo*“f(a)j 3 (@ et @)

If we know f7, then we can use the least squares principle and obtain an I-th order accurate

Er=fi-

estimate of f, at node o. Since we do not know ff, let us assume that we can obtain a

k1) If we want to use

k-exact approximation to it, denoted by fr, i.e., f§f = fr + O(Az;
fr in place of f£, then (ff — fr) must be of the order of the neglected terms in the Taylor

expansion, i.e., k > [. This gives the following result.

Theorem 1 The I’th order least squares procedure on the dual stencil is consistent if and
only if k > 1, and the resulting least squares formula for the gradient is l-exact. As a
consequence, if l = 1, then the least squares formula is consistent if k> 1.

!The terms connectivity and stencil are in the same sense.
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Hence if we want to use first order least squares formula, then the interpolation for de-
termining fr must be atleast second order accurate (i.e., linear interpolation).

Remark: The reason for introducing the point I instead of working with i is to achieve up-
winding without stencil splitting. The idea is to define a dual stencil of points I and then
use the least squares formula for the points in the dual stencil. This will become clear in the
next section.

Remark: Note that there may be a case where a node I of the dual stencil coincides with a
node j of the primary stencil. It would then seem inconsistent to use some other value at
the node for evaluation of the derivative. But since by the previous theorem we always need
to perform interpolation to obtain the value at I, we will atleast have f; — f; = O(h?) and
the error in using f; instead of f; will be mathematically acceptable since we are anyway
neglecting terms of O(h?) in our least squares procedure.

4 Numerical Scheme in 1-D

The Euler equation in conservation form is given by,

oU  OF
5t as =0 1)

where U is the vector of conserved variables and F' is the flux vector,

p pu
U=|pu |, F=| p+ pu?
E (E+p)u

The system of equations (1) can be obtained by taking moments of the Boltzmann equation

of  of
E‘FU%—O (2)

without the collision term

The moments are defined by?,

U= / Yfdvdl, F= / v fdodl (3)

with ¢ being the collisional invariants of the Boltzmann equation and f the Maxwellian
distribution. In one-dimension, these are given by,

1

Y= v

v
I+ =
+2

2Unless stated otherwise, all integrals are over R? x R, where d is the number of spatial dimensions,
and Rt = {z e R: 2z > 0}.
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f= I—po\/geXP{—/J’(v—U)2 - Iio}

Equations (2)-(3) give a kinetic representation of the system of conservation laws (1). We
will develop a method for (1) starting from the kinetic representation.

In order to estimate the spatial derivative in equation (2), we make use of the technique
described in section (3) keeping in mind the result of theorem (1). Assume that fr is a
1-exact approximation to ff. Then we define the error Ey as,

E; = fI - fo - Awlf:co = AfI - Awlf:co

where A()r = (*)1r — (+)o. Minimizing,
> Ef
I
wrt fro, we obtain the usual least squares formula,

n] _ L AzAfr
fz‘lo - ZA.CL‘% (4)

on the dual stencil C! = {I :i € C,}. The superscript ”[1]” denotes that it is a first order
formula on the dual stencil.

If f is the velocity distribution function, then the second order upwind estimate for f;
may be obtained in two ways®.

Case 1:
fu+ 1Az | D), ifv >0
fr= (5)
fr— Az if v <0
Case 2:
f(g@r), fv>0
fr= (6)
f(@r), fv<0
where

v = qu + |Azs|gtY)

_ 1
dr =qr — IA:vzqud%

The subscripts L and R denote the states to the left and right of I respectively, as shown in
figure (2), and the superscript ”(1)” denotes that the gradients are obtained using the first
order least squares formula with the full primary stencil. Substituting equation (4) into the
Boltzmann equation and taking moments, we obtain a discrete approximation to the Euler

equation,
dUo Z A.’L‘[ AFI

dt > Ax?

=0 (7)

3See Appendix (A)
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Figure 2: Stencil in 1-D and definition of left /right states.

where the flux Fy is defined as?,

Fy = / vt frdvdl (8)

Remark: Upwinding is introduced in the above method by mapping the data on the primary
stencil onto a dual stencil in an upwind manner. Updating is done by using the data on the
dual stencil. If we use the primary stencil, then the only way to achieve upwinding is by
stencil splitting as in LSKUM. The use of the dual stencil can be compared with dual finite
volumes in a cell-vertex finite volume method as discussed in section (2).

Remark: Strictly speaking the present method is not upwind but may be called upwind
biased. The main reason for this is the absence of a first order method which makes use of
only upwind data; even the first order scheme requires interpolation through a least squares
formula which brings in downwind effect. We will however still continue to call it an upwind
method and the numerical results to be presented make allowance for our misuse of termi-
nology.

Remark: The update formula (7) is identical to that of LSFD-U. The fluxes F; are eval-
uated here based on a splitting of the velocity-space at the level of kinetic theory, while in
LSFEFD-U, the fluxes can be evaluated using any flux-vector or flux-difference splitting method.

5 Further Analysis

We have seen that if we use first order least squares procedure together with point values
for evaluating f at the points I in the dual stencil, then we get an inconsistent formula. To
demonstrate this more explicitly, let us use the following approximation to fr in equation (4),

fL; lfUZO

fr= 9)
fR7 if v < 0

4The I in f; is not related to the I in dI.
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Substituting equation (4) into the Boltzmann equation, we get,

8f N EA.’L’IAfI Uo EAZL’]AF[
I I= VS it bl B
/zp dad +/ vp =E=—"—""dad o+ AL 0

Making use of the fact that,

v+ 0] — lv]

2

vfr = fr + 7

we get the following expression for Fr,

Fr+F7,ifieR,
F; =
E'r+F;,

o

ifiel,
so that we obtain,

Y Az AF; (Y AziAF )icr, + (X A2iAF] )ier,

> Arf (X Azd)ier,uc,
Let,
ao = Z Az?, b, = Z Az?
1€L, 1€R,

Using Taylor’s formula, we can write,
AF = 2Az Ff, + O(Ax})

Substituting this and the definition of a, b, we get,

EA.Z‘]AFI _ 2boF$+o + 2a,F,,

Sa = agtb, 0P
This can be rearranged as,
Az AF, o —bo _
LEUS ot (2 (2, - B+ O) (10)
> Axy ao, + be

In general, the second term on the right is O(1) which makes the formula inconsistent. It
will be consistent only if a, = b,. Consider for example, the following stencil,

{z, —3h,xo — h, 2,2, + h,z, + 2h}

This gives,

AziAF
E{sz ! = Foo+ 3(F— F) +0(h)
I

Clearly, this shows that the formula is inconsistent since the error is of O(1) even in the limit
of h —» 0. In general, a necessary and sufficient condition for consistency is that for some
a>0

a, — b, = O(h*T%) (11)
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Since a, + b, = O(h?), we see that the second term on the right of equation (10) is O(h®)
and the order of accuracy of the formula is min(1, @).

In the previous section, a consistent first order scheme has been constructed but it makes
use of the least squares formula on the primary stencil to get a consistent estimate of f,.
These gradients are then used to obtain a consistent least squares formula for the gradient,
which operates on the dual stencil and is also first order accurate.

Remark: The discussion in the above section shows that the least squares formula on the
dual stencil can be consistent in some cases even when no interpolation is performed for
determining the values at the dual nodes. Even though the final result makes sense, the
least squares procedure itself is mathematically inconsistent since we would be introducing
errors of order higher than those which are neglected in the Taylor’s formula. Note that
theorem (1) states the necessary and sufficient condition for the mathematical consistency of
the least squares procedure and only gives the sufficient condition for the consistency of the
least squares formula.

6 Numerical Scheme in 2-D

The result of theorem (1) is valid in the two-dimensional case also. Hence we derive a formally
first order accurate method by making use of linear interpolation for the fluxes. The 2-D

Euler equation in conservation form is,

oU OF 0G

E‘F%-Fa—y—o (12)

where U is the vector of conserved variables and F, G are the cartesian components of the

flux.
p pu pu2
v=|" | p=| ? + pui G- pu1u22
pu2 puLU2 D+ puj
E (E +p)wa (E +puz

The system of equations (12) can be obtained by taking moments of the Boltzmann equation
without the collision term

of of of _
E+v1%+v28_y_0 (13)

The moments are defined by,
U= /1/1fd1')’dI, F=/v1wfd1')’d1, G= /vgz/)fdf)’dI (14)

FM Report 08:2001 Department of Aerospace Engg.



Rotationally Invariant Method 9

Figure 3: Stencil in 2-D and definition of unit vectors.

with ¢ being the collisional invariants of the Boltzmann equation and f the Maxwellian
distribution. In two-dimensions, these are given by,

6.1 Least Squares Principle

Consider a typical node o and it’s stencil {¢ : 1 <47 < N,}. Let I denote the midpoint of
the line segment oi. Let the unit vectors along and normal to oi be denoted as &; and €,,;.
Figure (3) gives a definition sketch. If (I;,m;) are the direction cosines of oi, then

e = lép + m,-é'y

Emi = —Mi€g+ ligy

Assume that fr is a 1-exact upwind approximation to ff in the sense of section (4). Then,
similar to 1-D case, we define the error Ey as,

Er = fI_fo_AmIfwo_AyIfyo
= AfI_A:L'Ifzo_A:UIfyo

Minimizing,

Z'LU[E%
I
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Wrt fzo, fyo, We obtain the usual least squares formula,

S wrAy? Y wiAzAfr — Y wrAzAyr Y wrAyrAfr

(] —
fao Y wrAz? Yy wrAy? — (3 wrAzrAyr)?

(15)

_ E'LU[A.’L‘% Ew;AyIAfI - Z'LU[A.’L‘]AyI Z'wIASL'IAfI
Y wrAz2 Y wrAy? — (3 wrAzrAyr)?

on the dual stencil. We have also introduced a positive weighting function w; which is a

i (16)

function of |Z; — Z,|. Similar to equation (5)-(6), we can write the second order estimates

for f; as
Case 1:
o+ Az 80 + Ayrfsy), if v >0
fr= (17)
fi— Az fl) — AyrflY, if v <0
Case 2:
f(CIoi)a ifyy >0
fr= (18)
f(qio)a if (% S 0
where

Goi = Ri(qo + Azrgll) + Aqugﬁ,))

gio = Ri(qi — Aﬂflqg) - Aqug(,?)

and R; is the transformation matrix given by,

1 0 0 O
Rz' — 0 lz m; 0
0 —m; l,’ 0
0 0 0 1

Here we are assuming that the first and last elements of ¢ are scalars and the middle elements
form a vector. Examples of this are the conserved variables U = (p, pi, E)!, the primitive
variables V' = (p, i@, p)! or the entropy variables given by equation (32). The effect of
multiplying by this matrix is to transform the vector components into the rotated frame.
Substituting equation (15)-(16) into the Boltzmann equation and taking moments, we obtain
a discrete least squares based approximation to the Euler equations.

dUo + EwIAy%ZwIAa:IAFI —Ew;A:L'IAyIZwIAyIAFI
dt S wrAz? Yy wrAy? — (3 wiAzAyr)?

+ (ZwIAw% > wiAyAG — Zw’Am’AyIZwIAMGI> =0 (19)
S wrAz} > wrAy; — (O wrAzrAyr)?
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6.2 Evaluation of Fluxes

In the update equation (19), we have to evaluate the following integrals,
AFy = /vlwAfIdﬁ’dI = /vlzﬁffdﬁ’dl — /vlzﬁfodf)’dI =: Fr — Fy; (20)

and

AG[ = /Uz’(ﬂAf[dﬁdI = /U2’l/lf[d17df— /U2’l,[1f0d?7d1 =: G[ - Goi (21)

with fr given by equation (17) or (18). It is first convenient to define the following split flux,
Gt = / vatp fdTAI (22)
V1 20

and the expressions are given in appendix (B). Since, we can write,
v = lLivg — Mivm,  va = miv + Livy,

the moment vector i) becomes,

1
lﬂ)l — M;VUm
Y= m;v; + Livgy, (23)
1
I+ 5(v,2 +v2,)

In the rest of the report, we assume case (2) for interpolation. Substituting these in equa-
tions (20)-(21), we obtain after performing the integrations, the following expressions for the
fluxes,
Fr = F(qoi qio; liymi)
(24)
Gr = G(qi,ios li;ms)

where,

IF(p,q) — mGi(p, q)

I’F,(p,q) + m*Gs(p, q) — 2lmFs(p, q)

(1> = m*)Fs(p, q) + Im(Fa(p, q) — Gs(p, q))
1Fy(p,q) — mGa(p,q) ]

F(p,q;l,m) = (25)

mFi(p,q) +1G1(p,q)
(17 = m?)Fs(p, @) + Im(F2(p, ¢) — G3(p, 0) (26)
m2Fy(p,q) + 12G3(p,q) + 2ImF3(p, q)

mFa(p,q) + lé4(p, q) ]

In the above equations, we have used the following notation,

G(p,q;l,m) =

F(p,q) = F*(p) + F~(q), G(p,q) =G (p)+ G (q)

Indian Institute of Science FM Report 08:2001
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Similarly, we have
Foi

F(Riqo, Riqo; 1, m;)
(27)

Goi G(Riqo, Riqo; 1, m;)
Remark: The reason for defining F,;, G,; in the above manner is that if we have a uniform
flow, then AFT = AGr = 0, so that uniform flow is preserved.

Remark: The appearance of the fluxes G is a distinguishing feature of this method. Both
the flux along the ray oi and normal to it appear in the update formula. This must be
compared with a finite volume method where only the flux normal to the interface appears
in the update formula

Remark: There is no theoretical restriction upon the location of the point I except that
it should be on the line segment oi. In the present work, we have placed the dual point I at
the mid-point of the line segment oi.

7 Rotational Invariance

The method described here can be applied in any cartesian coordinate frame because of
the use of least squares formula. It is then pertinent to ask the question as to whether
there is any coordinate frame which is optimum in the sense that some relevant norm of the
error is minimized. To answer this question, we need to use the transformation properties
of the least squares formula which have been established in [8]. Theorem (3) establishes
the rotational invariance of the method which implies that there is no optimum coordinate
frame; all coordinate frames are equivalent in this sense. This is is one of the desired
properties of a genuinely multi-dimensional scheme. We first summarize a few results about
the transformation properties of the least squares formula [8].

Theorem 2 Let ¢, @ and o be scalar, vector and second order tensor field variables respec-
tively. Then

1. A7-V¢ is an invariant.
2. A7 - V1 is a vector.

3. V -4 is an invariant.

4. V -0 is a vector.

The least squares estimate of the above quantities also have the same properties.

This theorem essentially says that the least squares estimates of the derivatives of scalar,
vector and tensor field variables share the transformation properties of the corresponding

exact derivatives.

FM Report 08:2001 Department of Aerospace Engg.
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Theorem 3 The scheme defined by (19), (24), (27) is rotationally invariant, i.e., if p"+!,
u™t ul T Entl s the update in one coordinate frame and prt, @ttt ajtt, Ert) in

any other frame, then they are related by,

—n+1 — pn—}-l, En+1 — En+1

p
,L—’/IL'F]. _ R u;l-f'l
a;t-l-l ug-l-l
where R is the transformation matrix between the two frames.

Proof: By the rotational properties of the least squares formula [8] and summarized in
theorem (2), we see that g,i, gi» and R;q, are invariant. It is then enough to show that the
mass and energy fluxes transform like a vector, and the momentum flux transforms like a
tensor. Let ¢ be the angle between €; and €,. Then [ = cos ¢ and m = sin ¢, and define the

rotation matrix,

cos¢ sing
R(¢p) = 28
@) l —sing cos¢ ] (28)
With p, g denoting g,; or g;,, we can write,
.7:1 1 Fl (p; Q)
=R ~ 29
l G1 ] (@) G1(p,9) (29)
If the coordinate frame is rotated by an angle 6, then the corresponding fluxes are given by,
‘7_:1 — R(¢—0)_1 Fl(paq)
gl 1 (pa q)
— R(—¢+ 0) ~1(p5 q)
1(p,9)
‘7_'
= R(=6+OR@) | °, ]
G
J1
= R(0
| ]

We see that (F1,G1) transforms like a vector under coordinate rotation. This implies that
the update of density is independent of the coordinate system. The same proof holds for the
energy also.

The proof for the momentum is also similar. The momentum flux is given by,

F2 G 1| Ba Gapa)
=R ~ R 30
and upon coordinate rotation, we obtain,
Fr Go F2 G ¢
S T =R R(O 31
[}3 g3] ()lf3 gs] ©) 3D

13
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so that the momentum flux transforms like a second order tensor.

Remark: If we use a limiter, then ¢,;, ¢;, may not be invariant since the limiter could
depend on the coordinate system. However, this effect has been found to be small and we

give a numerical example in support of this remark.

8 Choice of Variable for Interpolation

There are various choices for the variables q,;, ¢;, which are obtained through linear inter-
polation. In the present framework of splitting the velocity-space the natural choice is the
conserved variables. However the use of conserved variables does not ensure the positivity of
pressure after a limiting procedure. Hence, it is better to use either the primitive variables
(p, @, p) or the entropy variables which are also known as g-variables [4] and are given by,

In -
lnp+ 5 -
.= L (32)
2051

The use of entropy variables seems to be attractive since it is directly related to the entropy
condition.

9 Selection of Stencil

The least squares formula operates on an arbitrary distribution of points for evaluating the
derivatives. Hence the selection of a suitable stencil becomes important. First of all, there
must be atleast three points in the stencil since the least squares procedure will not be over-
determined otherwise. Secondly, all the points in the stencil should not lie along a straight
line which would make it impossible to obtain the derivatives normal to that line. Thirdly,
the spatial dimensions of the stencil should be small in order to reduce the numerical error.
A useful criterion to check the above condition is the condition number o of the least squares
matrix [8]. A condition number ¢ = 1 indicates an almost isotropic stencil while a large
condition number indicates a highly stretched stencil. In all the computations here, the
condition number is kept below 10.

10 Wall Boundary Scheme

On solid walls, the primitive variables are updated using the strong formulation [3]. For
inviscid compressible flows, the strong formulation gives,

Up = 0 (33)

FM Report 08:2001 Department of Aerospace Engg.
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O0H

08 -1

- 7)771 Ugw (35)
6 — — —

% = —pit-(T- Vi) (36)

In the above equations, S = p/p” is an entropy-like variable, H is the total enthalpy, w
is the vorticity, and n represents the direction normal to the wall. The value of any variable
¢ (S, H or p) on the wall can be obtained by enforcing the above conditions using,

% = nzg—i + nyg—z = Source term (37)
where the x and y derivatives are replaced by their corresponding least squares expressions.
Equation (35) is the Crocco relation in a direction normal to the wall, wherein the isenthalpy
of the flow is assumed. The vorticity is everywhere zero if there are no discontinuities in
the flow, and according to [3], enforcing zero normal entropy gradient on the wall is less
dissipative for subsonic and transonic flows. Hence, this condition has been used in all the
computations.

A relaxation procedure has been used in updating the variables on the wall. If ¢™°* is
the value obtained from (37), then we set,

¢new — ¢old + a((gnew _ ¢old)

where «a is a relaxation factor, with typical value of & < 0.1. The use of relaxation was found
to be necessary for some cases with large gradients as in flow over a cylinder in order to
preserve positivity of pressure and density.

11 Outer Boundary Scheme

In lifting potential flows, the asymptotic form of the solution is that due to a point vortex.
In the case of flow past an airfoil at subsonic and transonic Mach numbers, the flow in
the far-field can be assumed to be a uniform circulatory flow due to a point vortex placed
at the center chord of the airfoil [10]. The circulation due to the vortex is related to the
instantaneous lift through the Kutta-Jowkousky theorem,

1
= Selin|Cr (38)

The flow induced by the vortex is calculated from small perturbation theory with the effect
of compressibility included through Prandtl-Glauert correction. This gives the velocity at
the far-filed as,

Uf = Uoo + Ky sinby (39)

Vf = Voo — ky cosly (40)

Indian Institute of Science FM Report 08:2001
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Rg

Figure 4: Point vortex model for far-field treatment

where ky is given by,
ry/1— M2
k= 2 (41)
2rR¢(1 — M2 sin*(f — )

and

Uoo = |Too| COSQ, Voo = |Uoo| sin a
The remaining unknowns are determined by enforcing the constancy of total enthalpy and
assuming that the flow is isentropic in the far-field. This is a valid assumption in subsonic
flows, and is quite reasonable in transonic flows provided the shocks do not reach the outer
boundary. The point vortex model has been used for subsonic/transonic flow past NACA0012
and subsonic flow past a two-dimensional cylinder.

12 Results

The new method KRIME together with the boundary conditions described above has been
applied to standard test cases. The first problem is a hypothetical 2-D blast wave problem,
which is used to demonstrate the rotational invariance property. The initial conditions for
this problem are,

(1.2,0,0,5000) if max(|z|,|y|) <0.1

) b ,T = i
(P01 {(1_0,0,0,300) if max(|z], Jy]) > 0.1

The computational domain is [—-1,1] x [—1,1] and a Cartesian grid of size 101 x 101 was used.
The solution is advanced through 600 time-steps with a constant time-step of At = 1078.

FM Report 08:2001 Department of Aerospace Engg.
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Configuration NACAO0012 | Cylinder-1 | Cylinder-2
Total points 9513 8052 12857
On body 200 200 200
On outer boundary 80 200 225

Table 1: Details of unstructured grids used in the computaions.

Interpolation is done using g¢-variables and weights are uniform. The computation is first
done on the given grid, which we designate by the angle § = 0. Then the computation is
repeated by first rotating all the quantities through some angle 8. We compare this result
with the reference result of 8 = 0 by the following norms,

N
16(8)I1x % ¢i<9;izo<)m<0)‘
N 2
6@, = \I%Z(@(zi&?im))
160) e = mw‘%m@;@)‘

If we set Vg = 0, then theorem (3) can be applied and the scheme is rotationally invariant.
We have found that the norm of the solution difference in this case is zero upto machine
precision. The pressure and density contours are given in figure (5) and (6) for § = 0 and
6 = 30° respectively. When Vq # 0, then theorem (3) is not valid since the min-max limiter
is not rotationally invariant. However, we have computed the norm of the solution difference
for different values of  and these are shown in figure (7). The pressure and density contours
are given in figure (8) and (9) for # = 0 and 8 = 30° respectively.

The other problems are standard 2-D aerodynamic flows over NACAQ012 airfoil at differ-
ent mach numbers and low subsonic and supersonic flow over a 2-D cylinder. An unstructured
grid has been used in both the cases whose details are given in table (1). The min-max lim-
iter of Barth-Jesperson has been used for the derivatives of the interpolation variables. The
primitive variables have been used for the NACA0012 test cases and the entropy variables
have been used for flow over cylinder.

The results of the computations are given in table (2) for flow over NACA0012. These
agree pretty well with the AGARD and GAMM standards. The pressure contours, mach
contours and the pressure distribution over the airfoil are shown in figures (10)-(15), which
indicate that the scheme has captured all the essential features of the flows considered.

For flow over a cylinder, two different grids have been used for subsonic and supersonic
flows. Cylinder-1 is used for subsonic flow and has a circular outer boundary while Cylinder-
2 was used for supersonic flow and has a parabolic outer boundary, as shown in figure (19).
Figures (16) shows the results for flow over a cylinder at a mach number of 0.3 which is
a challenging test case for an Euler solver. Mathematically the flow should be symmetric
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Mach No. Computed GAMM and AGARD
and AOA C Cy C Cy

0.80, 1.25° | 0.3690 | 0.0213 | 0.363 0.023
0.85, 1° 0.3839 | 0.0551 | 0.388 0.059
1.20, 0° -0.0009 | 0.0941 | 0.000 0.096

Table 2: Comparison of lift and drag coefficients for flow over NACA-0012.

about both the horizontal and vertical diameters of the cylinder. The contours show good
symmetry about the horizontal diameter but not about the vertical diameter, which is due to
the inherent numerical dissipation in the method leading to spurious entropy production. In
figure (17), the pressure distribution over the cylinder has been compared with the results of
potential theory. The total pressure and total temperature ratios at the stagnation point are
0.9973 and 1.0000 on the windward side. Figure (18) shows the pressure contours and mach
number contours obtained for flow over a cylinder at My, = 3. The bow shock on the front
and the slip line on the rear of the cylinder have been captured. The entropy contours are
shown in figure (19). The total pressure and total temperature ratios at the stagnation point
behind the shock are 0.3232 and 1.0004 while the exact values are 0.3283 and 1 respectively.

13 Summary

A new rotationally invariant gridless method for Euler equations which does not require
stencil splitting for enforcing upwinding has been described and tested on many standard
problems. The results demonstrate the ability of the method in computing subsonic, tran-
sonic and supersonic flows. Much more work needs to be done in order to ascertain the merits
and demerits of the new method in comparison with other gridless methods like LSKUM.
We list down some relevant points that need to be addressed in a future study.

1. The method is formally only first order accurate but the results obtained are comparable
to that of a second order method. The reason for this behaviour is not known at present.

2. The actual order of accuracy of the method is not known and must be determined

through numerical experiments.

3. The use of min-max limiter spoils the rotational invariance of the method but this
effect is small. If we use a smooth limiter unlike what is used here, we can expect to
reduce this effect further. A rotationally invariant limiter might also be developed.

4. No information is available regarding the amount of numerical viscosity that is inherent
in the method

5. The boundary conditions must be incorporated within the framework of the interior

scheme.
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6. The method must be tested on truly arbitrary distribution of points in order to demon-
strate it’s gridless nature.
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A The choice fr = (f,+ f;)/2

It is easy to show that this particular choice gives a consistent formula since it is 1-exact.

(2A£E1)2

fi= I+ QAw fe + 25

o0 + O(Azr?)
fr=fo+ (Bzn)f55 + (A1) f75, + O(Azr®)
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Also,
(A.TL'I)Z
2

f1 = fo+ (Azr)fo5 + a0+ O(Azr”)

so that,
Az 2
fI _ff - ( 21)

which shows that this particular choice is 1-exact or 2"%-order accurate. But this does not

o, + O(Az®) = O(Azr”)

give an upwind approximation. The choice,

fL7 lfUZO
fr= .
fR7 lfUSO

is upwind but leads to an inconsistent formula since this is only 0-exact.

B Expressions for Split Fluxes

The expressions for the split fluxes as defined in equation (22) are given below.

pus Ay
pu2 (ulz‘lit + Bl)

(p + pu3) AT

U1U
(E +p)uQA1i + P 231

The fluxes F* are the usual kinetic 2-split fluxes, which are given by,

p(ur A} £ By)
(p+ pud) AT + pur By

PUs (ulAljE + B)

L (E+p)u A + (E +p/2)B; |

where s
g P pld
v—1 2

and for a = 1,2,

Sa = ua\/,E

AE = %[I:I:erf(sa)]
_ exp(—s2)
bo = s
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Pressure

Figure 5: Contours for blast wave problem using inconsistent scheme at reference angle 0°.

Pressure

Figure 6: Contours for blast wave problem using inconsistent scheme at reference angle 30°.
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Figure 7: Norm of the solution difference for blast wave problem.
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Pressure

Figure 8: Contours for blast wave problem using first order scheme at reference angle 0°.

Pressure

Figure 9: Contours for blast wave problem using first order scheme at reference angle 30°.
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Pressure Mach
= 0.80, a = 1.25°.

Figure 10: Pressure and Mach contours M,
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Figure 11: Pressure distribution on airfoil M., = 0.80, o = 1.25°.
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Pressure Mach

Figure 12: Pressure and Mach contours for My, = 0.85, a = 1.0°.
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-C

Figure 13: Pressure distribution on airfoil M, = 0.85, @ = 1.0°.
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Figure 14:
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Pressure Mach

Pressure and Mach contours for My, = 1.20, a = 0.0°.
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Figure 15:
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Pressure distribution on airfoil My, = 1.20, a = 0.0°.
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Pressure Mach

iy

Figure 16: Pressure and Mach contours for My, = 0.3, a = 0.0°.

Figure 17: Pressure distribution on cylinder; My, = 0.3, o = 0.0°.
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Pressure Mach

A

Figure 18: Pressure and Mach contours for flow over a cylinder; My, = 3, a = 0.0°.
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Figure 19: Entropy contours, My, = 3, a = 0.0°.
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