Ramachandran, Parthasarathy
(2006)
*Use of Extended Euclidean Algorithm in Solving a System of Linear Diophantine Equations with Bounded Variables.*
In: Lecture Notes in Computer Science, 4076
.
pp. 182-192.

PDF
Use_of_Extended.pdf - Published Version Restricted to Registered users only Download (407kB) | Request a copy |

## Abstract

We develop an algorithm to generate the set of all solutions to a system of linear Diophantine equations with lower and upper bounds on the variables. The algorithm is based on the Euclid’s algorithm for computing the GCD of rational numbers. We make use of the ability to parametrise the set of all solutions to a linear Diophantine equation in two variables with a single parameter. The bounds on the variables are translated to bounds on the parameter. This is used progressively by reducing a n variable problem into a two variable problem. Computational experiments indicate that for a given number of variables the running times decreases with the increase in the number of equations in the system.

Item Type: | Journal Article |
---|---|

Publication: | Lecture Notes in Computer Science |

Publisher: | Springer |

Additional Information: | Copyright of this article belongs to Springer. |

Department/Centre: | Division of Interdisciplinary Sciences > Management Studies |

Date Deposited: | 02 Jul 2007 |

Last Modified: | 18 Jan 2012 06:23 |

URI: | http://eprints.iisc.ac.in/id/eprint/11336 |

### Actions (login required)

View Item |