Multiscaling in Models of Magnetohydrodynamic Turbulence
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From a numerical study of the magnetohydrodynamic (MHD) equations we show, for the first time
in three dimensiongd = 3), that velocity and magnetic-field structure functions exhibit multiscaling,
extended self-similarity (ESS), and generalized extended self-similarity (GESS). We propose a new
shell model for homogeneous and isotropic MHD turbulence, which preserves all the invariants
of ideal MHD, reduces to a well-known shell model for fluid turbulence for zero magnetic field,
has no adjustable parameters apart from Reynolds numbers, and exhibits the same multiscaling,
ESS, and GESS as the MHD equations. We also study the inertial- to dissipation-range crossover.
[S0031-9007(98)07096-3]

The extension of Kolmogorov's work (K41) [1] on fluid r = 57, (as exploited in some MHD shell models [6,7]).
turbulence to magnetohydrodynamic (MHD) turbulenceln GESS, which employ§;(r) = Slg‘(r)/[i.}“(r)]l”/3 and
yields [2] simple scaling for velocity and magnetic-field postulates afor@g(r) ~ [g;(,,)]pﬁq, with ph, = [gg —

b structure functions, for distancesin theinertial range /¢ /3]/[¢¢ — 4£¢/3], it has been suggested [12] for
between the forcing scale and the dissipation scalg, i H ' inerti i

€ _ g p Stdgq. fluid turbulence that the apparent inertial range is ex-
Many studies have shown that there are multiscaling coftended to the lowest resolvablehowever k-space GESS
rections to K41 in fluid turbulence [3]. Solar-wind data [11] shows a crossover from inertial- to dissipation-range
[4], numerical studies of two-dimensional MHD [5], and asymptotic behaviors.
recent shell-model studies [6,7] of MHD turbulence yield our studies yield many interesting results: The mul-

similar multiscaling. We elucidate this for homogeneousiiscaling exponents we obtain from 3DMHD and our
isotropic MHD turbulence, in the absence of a mean magsnell model agree (Figs. 1a and 1b) arifl > (7=
netic field, by presenting the first evidence for such multi-,z- - £v. (" lie close to the She-Leveque (éL) pre-
scaling in a numerical, pseudospectral study of the MHDd[i’ction [”13] fgr fluids (25" = p/9 + 2[1 — 2/3)73)

. - . . p 1
equations inthree dimensiong3dMHD). We propose a p +'»v' jia helow it (Fig. 1c) [14]. The probability dis-
shell model with no tunable parameters except Reynoldrcﬁbu,[li’On functions (Fig. 1d) foBv,(r) = va(x + 1) —
numbers, study it by an Adams-Bashforth method, ShOV\II} (x) and b, (r) = bgix +r) - ‘Z x) arg also differ-
it has this multiscaling, and that it reduces to the Gledzer- e e i « i
Ohkitani-Yamada (GOY) shell model [8.9] fard fluid ent. ESS works both with real- akdspace structure func

turbulence ifb = 0. To extract multiscaling exponents tions (Fig. 2). To study the latter we postulatespace

. A ESS [for real-space structure functions we $sand G
we develop the ideas of extended self-similarity (ESS) L .
[10,11] and generalized extended self-similarity (GESS)ZEg(];?,r theirk-space analogs (ndiourier transformsy

[11,12] in both real and wave-vectok) spaces, used in

fluid turbulence [10-12]. g4 = K)|P) =~ A% (S9)¢ L' <k <15k
We use the structure function§? = (la(x + r) — p = (a0l 17 (55) RGN
a(x)|”), wherea can bev, b, or one of the Elsasser S, = (la(k)|”) =~ A},(S5)*,  1.5ks =k <A,

variablesZ= = v = b, x andr are spatial coordinates, . _

and the angular brackets denote an average in the st@herea(k)is the Fourier transform af(r), A7, andAp,
tistical steady state.S¢ ~ #% at high fluid and mag- are, respectively, nonuniversal amplitudes for inertial and
netic Reynolds numbers Re and;Reespectively, and for dissipation rangesk, ~ n,', and A~! the (molecular)
the inertial range20n, =< r < L. The extension [2] of length at which hydrodynamics breaks down (cf. [11] for
K41 to homogeneous, isotropldHD turbulencewith no ~ fluid turbulence). The exponenis; and ;" characterize -
mean magnetic fielgields £¢ = p/3. Shell models [6,7] the asymptotic behaviors of the structure functions in
and solar-wind data [4] have obtained mu|tisca|ing indiSSipation and inertial ranges. They are universal, but
MHD turbulence, i.e.{? = p/3 — 8¢, with 8¢ > 0 ag # . Inour shell model " = ¢, bu_t our data for
and ¢ nonlinear, monotonically increasing functions of 3PMHD suggest/;* = 2(Z; + 3p/2)/11 (i.e., S5(k) ~

p. Work on fluid turbulence shows [3] an extended in-k % *37/2) in the inertial range [15]); the difference arises
ertial range if we use ESS [10] and GESS [12]: Thusbecause of phase-space factors [11}* and e seem
with ESS, in which¢; /3 follows from S ~ [S{1%/%,  universal (the same for all our runs [Table )5 1s close

we should expect by analogy that it extends down tdo, butsystematically lesthan, p/3. Thek dependences
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FIG. 1. (a)—(c) Inertial-range
exponents versug from typi-
) cal 3DMHD and shell-model
runs (Table I) and their com-
parison with the SL formula:
, , , , oL . . . (@) &/&, () /¢, and
2 4 6 8 2 4 6 8 (© &y, &b, &, and gy from

P P SH2. (d) Semilog (base
3 0 10) plots of the probability
distributions P(Sv.(r)) and
P(8by(r)) with r in the
dissipation range [we average
over 67, (Tablel) and
suppressa since we average
over Cartesian components]; a
Gaussian distribution is shown
for comparison.
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of §¢ follow from that of S5. We find has a slop@“(p,q) = [a; — p/3]/[e; — q/3]. These
S¢ ~ B?k,;;fg/z’ L < k= 1.5k, ) slopes are universal, put npt the points at which the curves
move away from the inertial-range asymptote. To obtain
S¢ ~ B“Dk‘S“ exp(—ck/ky), 1.5kg = k < A, (3) aunivers_al crossover scal?ng fgnctic[differ_ent for each
. . . . (p, q) pair because of multiscaling] we define 6g,) =
vyhere B7 and Bp are nonuniversal amplitudes [Equa- D, Iog(G;) and |qugp) = D¢, |09(G,j’); the scale fac-
tion (2) holds [11] for 3DMHD; f0f69Uf shell model the tors pa = D¢ are nonuniversal but plots of logH¢, )
factor9/2 is absent]. Thuall S; ~ k™ exp(—c“ajk/ka)  versus logH¢,), for both 3DMHD and our shell model,

for 1.5kg = k < A, with 67 = a6 (cf. [11] for fluid  ¢ollapse onto ainiversal curvewithin our error bars for
turbulence). In Eq. (3, ¢, andky are not univer- | ¢, Re,, and Rg, (Fig. 3).

sal; they depend on whether we use the 3DMHD equa- The MHD equations are [2]

tions or our shell model. We extract thmiversal part

of the inertial- to dissipation-range crossover via éur YA + " " +
space GESS as follows: We first defifi¢ = $¢/(55)7/3; o 27 - V27 = V2 + v-V'Z

log-log plots ofG}, versusGy yield curves withuniversal, — Vp* + £, (4)
but different,slopes for asymptotes in inertial and dissi-

pation ranges. The inertial-range asymptote has a slopghere v+ = (v, * v;)/2, v, and v, are, respectively,

Py, (as in real-space GESS); the dissipation-range onBuid and magnetic viscositiesp™ = [p + (b2/87)],

TABLE |. The viscosities and hyperviscosities, v, v,z, and vy, the Taylor-microscale Reynolds numbers,Rad Re,,
the box-size eddy-turnover times, and r.,, the averaging timer,, the time over which transients are allowed to deeay
and k, (dissipation-scale wave number) for our 3DMHD rung,.( = 32 for MHD1 and MHD2 andk,,.x = 40 for MHD3) and
shell-model runs SH1—k,.« = 2%k). The step sizést) is 0.02 for MHD1-3,2 X 107> for SH1-2, andl0~* for SH3—-4.
Note thatr,., = 87; the integral time for our 3DMHD runs.

RUn Vy VvH Vp VpH Re/\ Rem/\ Tev/6t Teu/6l Tt/Tev TA/TEU kmax/kd
MHD1 8 X 107* 7 X 107® 1073 8 x 107® =248 =143 =88 X 103 =6Xx 10> =2 =23 =1.83
MHD2 8 X 107* 9 X 107°© 8 X 107* 9 X 107®  =24.1 =18.1 =88 X 10° =56 X 10> =2 =23 =1.83
MHD3 8 X 107 9 X 107 8 X 107* 9 X 107° =26 =196 =79 X 10> =48 X 10> =1 =22 =222

SH1 107° 0 107° 0 =46 X 108 =7.8 X 108 =107 =6 X 105 =50 =450 =25

SH2 1078 0 1078 0 =43 X 107 =6.5 X 107 =107 =6 X 105 =50 =450 =28

SH3 107° 0 2 X 107 0 =4 X 106 =3 X 10®° =2 X 10° =10° =500 =2500 =210

SH4 4 x 107 0 107 0 =12 X 10° =1 X 10° =10° =17 X 10® =500 =3000 =2!!
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FIG. 3. GESS log-log plots (base 10) Hf), versusHgy and
(inset) HY, versus Hoo showing the inertial- to dissipation-
range crossover; lines are inertial-range asymptotes.
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bemsA/ v, Ay = [ [, Ey(k) dk/ [, K*E, (k) dk]'/?, Ay =
[/ Ey(k)dk/ [, K*Ey (k) dk]'/?, E,(k) ~ S5 (k)k?, and
MHDS3 Ey(k) ~ S5(k)k*. Parameters for runs MHD1-3 are
0 given in Table |, wherer,, = Lg/ams IS the box-size
REAL SPACE ESS . . . .
. WHD2 eddy-turnover time for field andr, the averaging time;
initial transients are allowed to decay over a perigd
We use quadruple-precision arithmetic; results from our
64> and80° runs are not significantly different.
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The Richardson-cascade picture suggests that the mul-
tiscaling behavior in turbulence might arise in simplified
dynamical models with a reduced number degrees of free-
dom arranged hierarchically. Shell models of turbulence
[3,8], which cannot be derived from the Navier-Stokes

equation, but build in the cascade and all conservation
; laws, achieve this reduction with complex scalar veloci-

ﬁﬁi(t:;tlzsie{?rss;gHEDsgltfgr(agDMﬂSngngb)gss l;(')r 'gﬁftzhe”tles in a logarithmically discretizedl space; they obtain
model; the lines show the inertial-range asymptotes (a fewdrge R& and exponents in agreement with experiments.
points on the right correspond to forcing scales and are noBimilar shell models for MHD turbulence have been pro-
used for inertial-range fitting). posed earlier [6,7,17], but there ® MHD shell model

that enforcesall ideal 3DMHD invariantsand which re-
with p the pressure, the density= 1, f* = (f = g)/2, duces to the GOY shell model for fluid turbulence, when
and f and g are the forcing terms in the equations for magnetic-field terms are suppressed. We present such a
av/dt andab/at. We assume incompressibility and use model and show that it yields; in agreement with those
a pseudospectral method [11] to solve Eq. (4) numericallywe obtain for 3DMHD. Our shell-model equations
We force the first twdk shells, use a cubical box with side dz=

FIG. 2. Log-log plots (base 10) off, versusS5 showingk

Ly = 24, periodic boundary conditions, ared® modes e ico — vikizr —v_k’z; + fr (5)
in runs MHD1 and MHD2 an&0® modes in run MHD3 ! . _ .
(Table 1). We include fluid and magnetic hyperviscositiesuse the complex, scalar Elsassar variablesz;

(v, = b,), and discrete wave vectors, k n

vyg and v,y [i.e., the term—(v, + v,zk?)k?* in the
for She”S n, Cn_ [alknzn+lzi1+2 + aanZn+lzn+2 +

equation forav(k)/ot and the term—(v, + vpuk?)k>
in the equation forob(k)/ot] [16]. For time inte- ask,- 1Zn 1Zn+1+a4kn 1Z0-12n41 + askn 22— 1Zn 2 +

gration we use an Adams-Bashforth scheme (stepdckn—22.— 124-2)", which ensuresz, z, ~ k= is
size 81). We use Rg= vmsA/v,, Re, = @ stationary solution in the inviscid, unforced limit



[6-9] and preserves the.,Z" — v_,Z~ symmetry compressive effects [20]; (ii) the inertial- to dissipation-
of 3BDMHD. We fix five of the parameters;; — a¢,  range crossover might not apply to the solar wind because
by demanding that our shell-model analogs of the to-a hydrodynamic description might break down in the
tal energy[= >, (lv,|*> + |b,1?)/2], the cross helicity dissipation range [20]. However, our results should apply
[=1/2>,(v,b; + vib,)], and the magnetic helicity to MHD systems with an equipartition regime [2]. The
[=>,(=1"b,|*/k,] be conserved ifr: =0 and agreement ofgl’j with the SL formula is interesting but,
f» = 0; while enforcing the conservation of energy, we believe, fortuitous since vorticity organizes itself into
we also demand [18] that the cancellation of termsfilamentary structures [13] in fluid turbulence but into
occurs as in 3DMHD. We fix the last parameter bysheetlike structures in 3DMHD (we have checked this in
demanding that, ib, = 0 for all n, our model reduces our study).

to the GOY model, with the standard parameters [9] We thank J.K. Bhattacharjee and S. Ramaswamy for
that enforce conservation laws. Finally; = 7/12,  discussions, CSIR (India) for support, and SERC (lISc,
a =5/12, a3 = —1/12, ays = —5/12, as = —7/12,  Bangalore) for computational resources.

ag = 1/12, and ¢ = 2. We solve Eq. (5) numerically

by an Adams-Bashforth scheme (step side), use

25 shells, force the firsk shell [11], setk, =27* = *Also at Jawaharlal Nehru Centre for Advanced Scientific

1/(2Ly), where L, is the box size, and usé&, = Research, Bangalore, India. _

SY (k) kny, Ay = Qa/ko) [, SY(kn)/ S, k,%Sé’(k,,)]m, [1] A.N. Kolmogorov_, C. R. Acad. Sci. USSBO, 301 (19_41).

A = Qa/k) [, Sé’(k,,)/ S, k,%Sé’(k,,)]‘/z, Vems = [2] D. Montgomgry, inLecture Noteg on Turbulenceldlte.d'

[k, > S¥(k )/77]1/2 and bums = [k, > Sh(k )/77_]1/2 by J.R. Herring and J._C. MCW|II|am_ (World Scientific,
0 & D2 \En ’ ms 0 Lun ©2 \tn ’ Singapore, 1989); D. Biskamp, Nonlinear Magnetohy-

Parameters for our four runs SH1-SH4 are given in  grodynamics.edited by W. Grossmaet al. (Cambridge
Table I. These use double-precision arithmetic, but we  ynjversity Press, Cambridge, England, 1993).

have checked in representative cases that our results ag] For recent reviews, see K.R. Sreenivasan and R.A.
not affected if we use quadruple-precision arithmetic. Antonia, Annu. Rev. Fluid Mech29, 435 (1997); S.K.
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cycle [9,18]. These oscillations can be removed either ~ (1994); L.F. Burlaga, J. Geophys. R&5, 5847 (1991);
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tionSZZp = (Im[ayays1aysy + anfla,lan+1/4]1’/3) [9l. [5] R. Graueret al., Phys. Plasmag, 41 (1995).

; . a . ! . [6] D. Biskamp, Phys. Rev. B0, 2702 (1994) also finds
Method (a) yields{/ {3, which we find are universal. {8 > ¢v,for p = 2, in a shell model.

Method (b) gives exponentgy. T_hese have a_mild [7] V. Carbone, Phys. Rev. 5O, R671 (1994).
dependence on Reand Rg, but this goes away if we [g] E B. Gledzer, Sov. Phys. Dokl18, 216 (1973); K.

consider the ratiog/Z5, as in the GOY model [11]; Ohkitani and M. Yamada, Prog. Theor. Phygd, 329
thus the asymptotes in our ESS and GESS plots have (1989).
universal slopes. [9] L. Kadanoff, D. Lohse, and J. Wang, Phys. Fluidis517

The Navier Stokes equation (3DNS) follows from (1995).
3DMHD if b = 0 or, equivalently, Rg, = 0. However, [10] R. Benziet al., Phys. Rev. E48, R29 (1993).
if we start with Rg, = 0, the steady state is characterized[11] S.K. Dhar, A. Sain, and R. Pandit, Phys. Rev. L&8,
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(and not costly 3DMHD) to study the_ f_Il_J|d turbulence to [13] Z.S. She and E. Leveque, Phys. Rev. LBR, 336 (1994).
MHD turbulen_ce crossover. A small initial value of ﬁe [14] We use the SL formula as a convenient parametrization
yields a transient with GOY-model exponents, but finally for the multiscaling exponents in fluid turbulence.
the system crosses over to the MHD turbulence steadys] For a heuristic justification for fluid turbulence, see [11].
state [18]. [16] Hyperviscosities do not influence multiscaling (Ref. [11]

In summary, we have shown that structure functions in  for fluids) in the inertial range, where conventional
3DMHD turbulence display multiscaling, ESS, and GESS, viscosities dominate. Even if the viscosity vanishes,
with exponents and probability distributions different hyperviscosity does not affe¢t /3 in fluid turbulence [E.
from those in fluid turbulence. Our new shell model (a) _ Leveque and Z.S. She, Phys. Rev. L&, 2690 (1995)].
gives the same exponents as 3DMHD and (b) reduced’] 8-98%0&9“9“ etal, Physica (Amsterdam)17D, 154
to the GOY model as Rg — 0. Our ESS and GESS ' . .
uncover a universal crossover from inertial- to dissipation}-8] A- Basu and R. Pandit (unpublished).
range asymptotics. It would be interesting to Comparélg] Thus in a renormalization-group calculation ,Reshould

. . . o appear as a relevant operator.
our results with experiments, but with caution: (i) solar-[zo] E. Marsch, inReviews in Modern Astronomy Vol.etited

wind data might yield exponents different from ours by G. Klare (Springer-Verlag, Berlin, 1991); C.-Y. Tu and
because of the presence of a mean magnetic field and E. Marsch, Space Sci. Re¥3, 1 (1995).



