PLASTIC: Reducing Query Optimization Overheads
through Plan Recycling

Vibhuti S. Sengar

Jayant R. Haritsa*

Dept. of Computer Science & Automation
Indian Institute of Science, Bangalore 560012, INDIA

1. INTRODUCTION

Query optimization is a computationally intensive process, es-
pecially for the complex queries that are typical in current data
warehousing and mining applications. The inherent overheads of
query optimization are compounded by the fact that a new query
is typically optimized afresh, providing no opportunity to amor-
tize these overheads over prior optimizations. While current com-
mercial query optimizers do provide facilities for reusing execution
plans generated for earlier queries (e.g. “stored outlines” in Oracle
9i), the query matching is extremely restrictive — only if the incom-
ing query has a close textual resemblance with one of the stored
queries is the associated plan re-used to execute the new query.

Recently, in [1], we proposed a tool called PLASTIC (Plan Se-
lection Through Incremental Clustering) to significantly increase
the scope of plan reuse. The tool is based on the observation that
even queries which differ in projection, selection and join predi-
cates, as also in the base tables themselves, may still have identical
plan templates, that is, they share a common database operator tree.
By identifying such similarities in the plan space, we can materially
improve the utility of plan cacheing.

PLASTIC attempts to capture these similarities by characterizing
queries in terms of a feature vector that includes structural attributes
such as the number of tables and joins in the query, as well as sta-
tistical quantities such as the sizes of the tables participating in the
query. Using a distance function defined on these feature vectors,
queries are grouped into clusters. Each cluster has a representative
for whom the template of the optimizer-generated execution plan
is persistently stored, and this plan template is used to execute all
future queries assigned to the cluster. In short, PLASTIC recycles
plan templates based on the expectation that its clustering mecha-
nism is likely to assign an execution plan that is identical to what
the optimizer would have produced on the same query.

Experiments with a variety of TPC-H-based queries showed that
PLASTIC predicts the correct plan choice in most cases, thereby
providing significantly improved query optimization times. Fur-
ther, even when errors were made, the additional execution cost
incurred due to the sub-optimal plan choices was marginal. PLAS-
TIC also improves query execution efficiency by making it feasi-

*Contact Author: haritsa@dsl.serc.iisc.ernet.in. This work was
supported in part by a Swarnajayanti Fellowship from the Dept.
of Science & Technology, Govt. of India.

ble for optimizers to always run at their highest optimization level.
Further, the benefits of “plan hints”, a common technique for in-
fluencing optimizer plan choices for specific queries, automatically
percolate to the entire set of queries that are associated with this
plan. Lastly, since the association of queries with clusters is based
on database statistics, the plan choice for a given query is adaptive
to the current state of the database.

2. THE PLASTIC PROTOTYPE

T QueyOptimize|

Plan Template
Generator
I Feature Vector .
‘ ¥
X X
System Plan Template
Catalogs Database
3 Feature
Query Feature VVector

Plan
Y| Similarity Check =1 Plan Generator —L—~

Extractor

Cluster Id)

Figure1l: The PLASTIC Architecture

A block-level diagram of the PLASTIC architecture is shown in
Figure 1 (the solid lines show the sequence of operations in the sit-
uation where a matching cluster is found for the new query, while
the dashed lines represent the converse situation where no match is
available and a fresh cluster is created). Based on this architecture,
we have built a prototype implementation of PLASTIC. The tool is
designed to be fully contained in the database system without re-
quiring any support from the operating system; non-intrusive with
respect to the optimizer by treating it as a black box and not requir-
ing any internal modifications; easily portable across platforms and
optimizers; extensible to incorporate changes to the tool modules;
and with a variety of visual interfaces, including a plan diagram [1]
generator, to help analyze and improve the tool’s performance.

In the demo, a Java implementation of PLASTIC working with
Oracle 9i and IBM DB32 is presented, and its potential for amortiz-
ing query optimization overheads is highlighted.

3. REFERENCES

[1] A. Ghosh, J. Parikh, V. Sengar and J. Haritsa, “Plan Selection based
on Query Clustering”, Proc. of 28th Intl. Conf. on Very Large Data
Bases (VLDB), August 2002.

