
Performance of Switch Blocking on Multithreaded Architectures

K. Gopinath & Krishna Narasimhan M.K.

Department of Computer Science & Automation

Indian Institute of Science, Bangalore

and

B.H. Lim & Anant Agarwal

Laboratory for Computer Science

MIT, Cambridge, US

September 1, 2010

Abstract Block multithreaded architectures tolerate large

memory and synchronization latencies by switching contexts on

every remote-memory-access or on a failed synchronization re-

quest. The Alewife machine, developed at the MIT, is one such

architecture. We study the performance of a waiting mech-

anism called switch-blocking on Alewife and compare it with

switch-spinning.

1 Introduction

Remote memory access latencies are increasingly becoming
high in large-scale multiprocessors[Dash]. They cannot be
removed entirely by caching as some memory transactions
can cause cache coherence protocols to issue invalidation
messages and misses have to be endured. Processors can
spend most of their time waiting for remote accesses to be
serviced, hence reducing the processor utilization[Dash91].
A similar problem arises when the processor must wait
due to a synchronization; the problem is even more acute
as these delays may be unbounded.

One solution that addresses both the above mentioned
problems allows the processor to have multiple outstand-
ing remote memory accesses or synchronization requests.
The Alewife [CHA91] machine implements this solution
by using a processor that can switch rapidly between mul-
tiple threads of computation and a cache controller that
supports multiple outstanding requests. Processors that
switch rapidly between multiple threads of computation
are called multithreaded architectures.

The prototypical multithreaded machine is the HEP
[SMI81]. In HEP, the processor switches every cycle
between eight processor resident threads. Architectures
employing such cycle-by-cycle interleaving of threads are
called finely multithreaded. In contrast, Alewife employs
block multithreading: context switches occur only when a
thread executes a memory request that must be serviced
by a remote node in the multiprocessor, or on a failed
synchronization request. The Alewife controller traps the
processor and the trap handler forces a context switch.
The trap handling routine has a variety of waiting mech-
anisms to choose: spinning, switch-spinning, blocking and
switch-blocking.

Previous work at MIT[LIM91] had studied the perfor-

mance of the first three waiting mechanisms under vari-
ous models (2-phase algorithms, matched and unmatched
algorithms, etc. described below). Here we report the
modelling, implementation and benchmark performance of
switch-blocking. We also compare switch-blocking with
switch-spinning and draw some conclusions.

This paper is organized as follows. In Section 2, we de-
scribe briefly Alewife’s architecture, synchronization con-
structs and waiting mechanisms. In Section 3.2, we pro-
pose a Markov model for switch-blocking and compute its
effectiveness. Section 4 gives the implementation details
of switch-blocking. Section 5 presents the software simula-
tor (ASIM) & benchmarks used and the results, especially
comparing one-phase switch-spinning with switch-blocking
and the two-phase switch/block algorithms for these two
waiting mechanisms by running different benchmarks on
Alewife. Finally, we conclude with some observations and
future work.

2 Alewife Machine

Before we proceed, it is judicious to define some terms. A
thread is a process with its own processor state but with-
out a separate address space. A parallel program consists
of a set of inter-communicating threads. A hardware con-
text is a set of registers on a processor that implements
the processor-resident state of a thread. A multithreaded
processor has several hardware contexts; Alewife provides
four on each processor. A context switch is a transfer of
processor control from one processor-resident thread to an-
other processor-resident thread. No thread state needs to
be saved out into memory. Loading a thread refers to the
action of installing the state of a thread into a hardware
context on a processor and unloading a thread refers to
the complimentary action of saving the processor-resident
state of a thread into memory. A thread is blocked when
its execution is suspended and it is queued on some syn-
chronization condition. The thread remains blocked until
it is signaled to proceed by another thread.

Alewife is a SPARC-based cache-coherent, block-
multithreaded, distributed memory multiprocessor that
supports a shared-memory programming abstraction. The

1



high-level hardware organization of an Alewife node (Fig-
ure ??) consists of a processor, 64K bytes of direct-mapped
cache, 4M bytes of globally-shared main memory, cache-
memory-network controller, a network switch , and a
floating-point co-processor. Each node has an additional
4M bytes of local memory, a portion of which is used for
the coherence directory. The cache-memory-network con-
troller is responsible for synthesizing a globally shared ad-
dress space from the distributed memory nodes. The 32-
bit address space on SPARC limits the maximum machine
size to 512 nodes. Alewife has a simple memory mapping
scheme, the top few bits of the address determine the node
number, and the rest of the address is the index within the
specific node.

The initial implementation of the node processor is var-
iously called Sparcle or APRIL [KRA90] and designed to
meet several requirements that are crucial for multipro-
cessing: tolerate latencies and handle traps efficiently. It
has four hardware contexts with a context switch taking
14 cycles. The trap mechanism takes 5 cycles to empty
the processor pipeline and save the relevant state before
passing control to the trap handler.

Alewife implements the directory-based LimitLESS1

cache coherence scheme [KUB91], [CHA90] that imple-
ments a small set of pointers in memory, as do limited-
directory protocols. But, when necessary, the scheme al-
lows a memory module to interrupt its local processor for
the software emulation of a full-map directory: this is fa-
cilitated by Sparcle’s fast trap mechanism.

2.1 Mapping of Threads onto Hardware

Contexts

Figure ?? illustrates how threads are mapped onto the
hardware contexts of the processor. The left half of the
figure depicts the user-visible state comprising four sets
of general purpose registers and four sets of Program
Counter(PC) chains and Processor Status Registers(PSR).
The PC chain represents the instruction addresses corre-
sponding to a thread, and the PSR holds various pieces of
processor-specific state. Each register set, together with a
single PC-chain and PSR, constitutes a hardware context.
Only one hardware context is active at a given time and
is designated by a current frame pointer(FP). All register
accesses are made to the active register set and instruc-
tions are fetched using the active PC-chain. Additionally,
a set of 8 global registers are provided, these are accessible
regardless of FP. In the Figure ??, 0x denotes context 0,
1x denotes context 1, etc.

It is important to emphasize the difference between
traditional view of context switching and thread context
switching in Alewife. Traditionally, a context switch in-
volves saving out the state of a process into memory, and
loading the state of another process into the processor. In
multithreaded architectures, a context switch does not in-
volve saving state into memory; the processor can activate
a different hardware context. Processor state is saved in
memory only when a thread is blocked and unloaded. The

1Limited directory Locally Extended through Software Support

time in between context switches is termed as context run
length.

A thread on Alewife can be in any one of four states:
new, running, blocked and re-enabled. A thread is run-
ning if it is resident in a hardware context regardless of
whether it has control of the processor. Blocking a thread
involves unloading a thread and placing it on a queue
associated with the failed synchronization. Re-enabling
a blocked thread involves removing the thread from the
blocked queue and queuing that thread on the processor
on which it was originally running.

Associated with each processor are three logical queues.
One queue is used for new threads, a second queue is used
for re-enabled threads, and a third queue is used for lazy
task creation [MOH90]. A distributed scheduler is respon-
sible for finding work on these queues. By default, each
processor that is not fully loaded runs the scheduler in one
of the free contexts. The scheduler forages for work by
probing its logical queues and the queues of remote pro-
cessors, favoring physically closer processors over farther
processors in order to enhance communication locality.

2.2 Synchronization in Alewife

Alewife’s primitives for hardware support for synchroniza-
tion are full/empty bits and an efficient trap mechanism.
Higher-level synchronization constructs are synthesized in
software using these relatively minimal hardware primi-
tives and are available as a software library. The trap
mechanism is used to efficiently detect synchronization
faults and relegate control to a trap handler to execute
an appropriate waiting algorithm.

A full/empty bit, like in HEP [SMI81], is associated with
each memory word and atomic read/modify/write op-
erations can be performed on the full/empty bit in a single
cycle. The read-and-empty is an atomic instruction that
simultaneously reads a memory word and sets the associ-
ated full/empty bit to empty. An empty-location trap is
generated if the word was already tagged as empty. Con-
versely, write-and-fill is another atomic instruction that
simultaneously writes a memory word and sets the associ-
ated full/empty bit to full. A full-location trap is generated
if the word is already tagged as full. A synchronization
succeeds if it does not cause a thread to wait, and fails
otherwise.

The following higher-level synchronization constructs
provided by Alewife are built on top of the hard-
ware full/empty bit: semaphores, mutual-exclusion locks,
read/write locks, J-structures (reusable I-structures), L-
structures, futures and barriers. We discuss briefly only
those that are unique to Alewife below.

J-structures (reusable I-structures) are implemented as
vectors with full/empty bits associated with each vector
slot. A reader of a J-structure slot is forced to wait if the
full/empty bit for that slot is 0. A writer of a J-structure
slot sets the full/empty bit to 1 and releases any readers
waiting on it. A J-structure can be reset. This clears
out all the value slots and sets the full/empty bits to 0.
Resetting a J-structure to an empty state enables efficient
memory allocation and good cache performance.

2



L-structures are similar to J-structures but support
three operations: locking read, non-locking read and syn-
chronous write. A locking read waits until an element is
full before emptying it (i.e. locking it) and returning the
value. A non-locking read also waits until the element is
full, but then returns the value without emptying the el-
ement. A synchronizing write stores a value to an empty
element, and sets it to full, releasing any waiters. An L-
structure therefore allows mutually exclusive access to each
of its elements. In addition, L-structures allow multiple
non-locking readers.

Futures [HAL90] are a way of specifying parallelism in
Multilisp. They encapsulate both a partitioning of a pro-
gram into threads and synchronization on the return values
of the threads. The evaluation of (future X), where X is
an arbitrary expression, creates a thread to evaluate X and
also creates an object known as a future to eventually hold
the value of X. When created, the future is in an unre-
solved state. When the value of X becomes known , the
future resolves to that value. Concurrency arises because
the expression (future X) returns the future as its value
without waiting for the future to resolve. Thus, the com-
putation containing (future X) can proceed concurrently
with the evaluation of X.

The future object is a first-class object whose type is
checked at run-time. Without some sort of hardware sup-
port, the check would have to be done in software, incur-
ring substantial cost. However, creative use of SPARC
non-fixnum traps and compiler enforced addressing con-
ventions allow the detection of futures as efficiently as hav-
ing hardware tag checking without additional hardware.

It is implemented as two memory words: one to even-
tually hold the value of the future and another to hold
the queue of blocked waiters(see Figure ??). This data
structure is identical to the data structure for semaphores.
However the data structure is used in a very different way.
Any pointer to a future object has its least significant three
bits set to 101 to support automatic type checking. Also,
the value slot for the future starts out in the empty state
with a pointer to the thread closure associated with the
future. The value slot is written to at most once, when the
future is resolved.

2.3 Waiting Mechanisms

Spinning is a polling mechanism. It has low execution cost
because each poll of the synchronization variable consumes
only a few processor cycles to read a memory location, but
it is not processor-efficient because it prevents the other
threads from utilizing the processor.

When a thread spin-waits, it periodically monitors the
state of a memory location. Besides consuming processor
cycles, it can also cause the load on the network to increase
if not done carefully. An economical way to spin-wait on
a machine with hardware cache coherence like Alewife is
to continuously read a memory location. In this way, the
location gets cached locally, and no network bandwidth is
consumed while spinning. When the state of the memory
location changes due to a write, the ensuing cache inval-
idations cause the spinning waiters to notice the change

and attempt to synchronize again.

Blocking is a signaling mechanism. It is processor-
efficient because it relinquishes control of the processor,
but has high execution cost. This cost includes the time
needed to unload and suspend the waiting thread, and
then reschedule and reload it at a later time. Unloading a
thread involves storing its hardware context into memory
and reloading a thread involves restoring the saved context
of the thread onto the processor.

Alewife does not provide any special hardware support
for unloading. When a thread is blocked, its user regis-
ters and state registers are first written out to memory.
The suspended thread is then placed on a queue associ-
ated with the synchronization location being waited on.
When another thread updates the synchronization loca-
tion, it re-enables all waiting threads by queuing them on
their respective processor queues. A thread is reactivated
by reloading its saved registers into the processor, and then
picking up where it left off.

In the case of switch-spinning, context switch takes place
to another resident thread upon a synchronization fault.
The processor is kept busy executing other threads at the
cost of the fast context switch without incurring the high
overhead of blocking. Control eventually returns to the
waiting thread and the failed synchronization is retried.
This mechanism is more processor-efficient than spinning
and has a lower execution cost than blocking.

The switch-blocking waiting mechanism disables the con-
text associated with the waiting thread and switches exe-
cution to another context. The disabled context is ignored
by further contexts switches until it is re-enabled when
the waiting thread is allowed to proceed. Contrast this
with blocking, which requires unloading a thread. It is as
processor-efficient as blocking and has a low-execution cost
because threads are not unloaded.

3 Two Phase Algorithms

Without any information about the distribution of wait
times, one cannot expect an on-line waiting algorithm to
perform as well as an optimal optimal off-line algorithm.
However, competitive analysis can be used to place an up-
per bound on the cost of an on-line algorithm relative to
the cost of an optimal off-line algorithm. A c-competitive
algorithm has a cost that is at most c times more than
the cost of an optimal off-line algorithm. Karlin[KAR90]
present a refinement of the 2-phase blocking scheme, and
prove a competitive factor of 1.59 on their algorithm. The
idea is based on 2-phase blocking: given a choice between
spinning and blocking, the waiting thread should spin for
some period of time and then block if the thread is still
not allowed to proceed. The maximum lenngth of the spin
phase is randomly picked from a predetermined probability
distribution.

An optimal off-line algorithm has perfect knowledge
about wait times. Therefore, at each wait, it knows ex-
actly how long the wait time will be. If the cost of switch-
blocking for the entire wait time is more than the cost
of blocking, the optimal off-line algorithm will choose to

3



block immediately. Otherwise it will switch-block. A two-
phase algorithm splits the waiting into a polling phase and
a signaling phase. But we will be considering a two-phase
algorithm that splits the waiting between two signaling
phases. This algorithm executes switch-blocking for some
length of time and then blocking if the thread still has to
wait.

Let us express the length of the switch-blocking phase
as αB, where α is a non-negative constant and B is the
overhead of blocking. Setting α to 1 yields a 2-competitive
algorithm because any wait time that is less than B incurs
the same cost as an optimal off-line algorithm while any
wait time that is more than B cycles is exactly twice the
cost of the optimal algorithm. If α > 1, any wait time
that is more than B cycles costs (1 + α) times more than
optimal.

The following abbreviations are used for naming the
waiting algorithms:

Ssbl - always switch-block
block - always block
OptSsblB - optimal two-phase off-line using

switch-blocking and blocking
SsblBα - two-phase switch-block/block

Here SsblB denotes that the waiting thread will switch-
block for some amount of time and then it will block itself,
if the condition waited upon is not satisfied.

3.1 Expected Costs

In the analysis that follows, we write random variables in
upper-case and their values in lower-case. The probabil-
ity density function (PDF) of the random variable X is
denoted by f(x). Let t be the average wait time. Let T
denote the random variable for wait time and the PDF
for wait time be denoted by f(t). Let B be the cost of
blocking.

Always Switch-Block (Ssbl) If the cost of switch-
blocking is t

γ
, then 1

γ
will denote the fraction of proces-

sor time wasted on a synchronization condition. From
the model that we have proposed for switch-blocking
we can derive the equation for γ as follows

γ =
t

W
(1)

Cost of waiting for t cycles under Ssbl is t/γ, the ex-
pected cost of Ssbl is

E[CSsbl
] =

1

γ

∫
∞

0

tf(t)dt

=
1

γ
E[T ] (2)

Blocking (block) the cost of blocking is B, regardless of
the wait time distribution.

E[Cblock] = B (3)

Optimal switch-block/block (OptSsblB) The cost of
doing switch-blocking in phase 1 will reduce the cost

of that phase by a factor of γ and the maximum length
of this phase will be γB. Hence

E[COptSsblB
] =

1

γ

∫ γB

0

tf(t)dt + B

∫
∞

γB

f(t)dt (4)

Two-phase Switch-Block/Block (SsblBα) This algo-
rithm switch-blocks until the cost of switch-blocking
is equal to αB and then blocks if necessary. Hence
the expected cost of SsblBα is

E[CSsblBα
] =

1

γ

∫ αγB

0

tf(t)dt + (1 + α)B

∫
∞

αγB

f(t)dt

(5)

Once the wait time distributions for commonly used
synchronization types (like mutual exclusion, barriers,
producer-consumer) are derived by making suitable as-
sumptions (see Lim[LIM91] for details), one can compute
the cost of the different waiting algorithms. Given that t is
the synchronization wait time, Lim[LIM91] assumed that
it is t/β for switch-spinning, where β is given by

β =
t

(x + C)d t
N(x+C)e

(6)

Here d t
N(x+C)e denotes the number of times control

returns to the waiting thread before it succeeds in its
synchronization attempt and x denotes the context run-
length. Assuming that the factor for switch-blocking is
γ instead of β, all the results that Lim derives are car-
ried through except that β has been replaced by γ. For
completeness, we include only the results for producer-
consumer.

3.1.1 Waiting Cost for Producer-Consumer

Assume a single-producer, multiple-consumer situation to
model the synchronization provided by futures and J-
structures. Let us assume a Poisson process with arrival
rate λ. The PDF of wait times for consumers is the expo-
nential distribution

f(t) = λe−λt (7)

Hence the cost of switch-block is

E[CSsbl
] =

∫
∞

0

t

γ
λe−λtdt =

1

λγ
(8)

The cost of optimal off-line switch-block/block is

E[COptSsblB
] =

∫ γB

0

t

γ
λe−λtdt + B

∫
∞

γB

λe−λtdt

=
1

λγ
(1 − e−λγB) (9)

The cost of two-phase switch-block/block is

E[CSsblBα
] =

∫ γαB

0

t

γ
λe−λtdt + (1 + α)B

∫
∞

γαB

λe−λtdt

=
1

λγ
(1 − e−λαγB) + Be−λαγB (10)

4



3.2 Markov Model for Switch-Blocking

The above derivations do not take into account the cost of
finite context switching times in hardware, though small
compared to B. To incorporate this into the model, we de-
velop the following Markov model for pure switch-spinning
and switch-blocking for the matched case where the num-
ber of threads and processor contexts match. At the level
of modelling attempted, it is not possible to derive the
differences between them in one stroke; we use the so-
journ times computed below in the combined model to
then estimate the additional overhead of switch-spinning
over switch-blocking. (We leave the modelling for the un-
matched case as future work.)

3.3 Combined Model

We make the following assumptions:

• The average rate at which any active context gets dis-
abled is exponentially distributed with parameter λ.
Note that this is not the same as the rate at which
a particular context gets disabled as the exact iden-
tity of the context is not clear in the case of switch-
blocking.

• The average rate at which a context is enabled is ex-
ponentially distributed with parameter µ.

• At any point in time only one context can be enabled
or disabled.

Let N be the total number of hardware contexts. Let πi

denote the steady state probability of state i. Let C de-
note the context switch overhead. Let E[Tb] denote the ex-
pected time when all the contexts are disabled. Let E[Tbi]
denote the expected time when i contexts are disabled. Let
E[Twi] denote the expected wait time of context i.

The Markov model has N +1 states. State i denotes the
state wherein i contexts are enabled. State 0 denotes the
state wherein all the contexts are disabled. Initially all the
contexts are enabled. The rate at which a transition takes
place from state (N − i) to state (N − i + 1) is the rate
at which any one of the remaining i contexts are enabled.
Hence this rate is iµ.

The rate at which a transition takes place from state
(N−i) to state (N−i−1) is the minimum rate at which any
one of the remaining (N − i) contexts are disabled. Hence
this rate is (N − i)λ. Figure ?? illustrates this model. The
steady state probabilities can be calculated as follows:

πNNλ = µπN−1

π(N−2)2µ = (N − 1)λπN−1

...

Hence we get

π(N−i) =
N !

i!(N − i)!
(
λ

µ
)iπN for i = 1, . . . , N.

Since
∑N

i=0 πi = 1, we get

πN =
1∑N

i=0
N !

i!(N−i)! (
λ
µ
)i

The rate at which the state (N − i) transits to state
(N − i + 1) is exponentially distributed with parameter
iµ and the rate at which a transition takes place to state
(N−i−1) is also exponentially distributed with parameter
(N − i)λ. Hence the time spent in the state (N − i) is
again exponentially distributed with parameter min((N −
i)λ, iµ), which is same as (N − i)λ + iµ: this leads to
equation 11

E[Tbi] =
1

(N − i)λ + iµ
(11)

Substituting i = N in equation 11 we get

E[Tb] =
1

Nµ
(12)

The PMF’s for different values of λ/µ are plotted in
Figures ?? and ??.

3.4 Modelling the difference

To model the difference between switch-spinning and
switch-blocking, we make the assumption that the sojourn
times for the various times are the same for both and given
by the above equations. This approximation is reasonable
as they difference in the simulated times for many bench-
marks is typically not more than 5-8%.

The following result for M/G/1 with vacations can be
used immediately[NET87] where W is the wait time, X is
the service time, V the vacation:

W = λX2/2(1 − ρ) + V 2/2V (13)

Let the service time include the context switch time.
Then the vacation time is given by kCsp where k is the
number of idle contexts attempted before success in switch-
spinning, Csp the context switch time for switch-spinning
and Csb for switch-blocking. (Csp = 14 and

Csb = Csp + 2 = 16

: see the section on implementation)
The vacation part of the waiting time in equation 13 is

computed as follows:

Vsp = Csp(1−π0)(π4∗0+π3/3+π2(1/3+2/3)+3π1)+π0E[Tb] = xCsp(1−π0)+π0E[Tb]
(14)

V 2
sp = C2

sp(1−π0)(π4∗0+π3/9+π2+9π1)+π0E[Tb]
2 = yC2

sp(1−π0)+π0E[Tb]
2

(15)
Vsb = (1 − π0)(Csb − Csp) + π0E[Tb] (16)

V 2
sb = (1 − π0)(Csb − Csp)

2 + π0E[Tb]
2

(17)

Given that the number of enabled contexts is i, and the
current context is enabled, the average is computed by
enumerating all the possible states of the contexts, and,
assuming that they are equiprobable, multiplying by the
time for the number of intervening failed contexts. Switch-
blocking has a short vacation with each context-switch
given by (Csb − Csp).

5



To estimate how effective the model is, consider the
case for λ/µ = 0.5 that is close to the observed proba-
blity profile for the number of live contexts for the multi-
grid benchmark. The computed values are as follows:
π0 = 0.012;π1 = 0.099;π2 = 0.296;π3 = 0.395;π4 = 0.198

Using 12 and assuming an average value of context run
length obtained from a simulation for multigrid (namely:
43, i.e. λ = 1/43 per cycle), the extra wait for switch-
spinning is given by 0.69Csp i.e. for every context-switch
suffered by switch-blocking, there is an extra 0.69 context-
switch overhead in the case of switch-spinning. This
roughly corresponds to the observed difference in clock cy-
cles between switch-blocking and switch-spinning in order
of magnitude (calculated: 24,000 cycles; observed: 33,000
cycles). This is quite reasonable as we have not explicitly
taken into account the context switches due to synchro-
nization or remote cache misses. More work is in progress
to validate the model comprehensively.

4 Implementation of Switch Block-

ing

The Sparcle processor is based on the following modifica-
tions to SPARC architecture:

• Register windows in the SPARC processor permit a
simple implementation of block multithreading. A
window is allocated to each thread. The current regis-
ter window is altered via SPARC instructions (SAVE
and RESTORE). To effect a context switch, the trap
routine saves the Program Counter (PC) and Proces-
sor Status Register (PSR), flushes the pipeline and
sets the Current Window Pointer (CWP) to a new
register window for a total of 14 cycles.

• The emulation of multiple hardware contexts in the
SPARC floating-point unit is achieved by modify-
ing floating-point instructions in a context-dependent
fashion as they are loaded into the FPU and by main-
taining four different sets of condition bits.

• Sparcle detects unresolved future through SPARC
word-alignment and tagged-arithmetic traps, with the
non-fixnum trap modified to look at only the low bit.

• Through the use of memory exception (MEXC) line on
SPARC, the controller can invoke synchronous traps
and rapid context switching.

• SPARC architecture definition includes an alternate
space indicator (ASI) feature that permits a simple im-
plementation of an interface with the controller. The
ASI is externally available as an eight-bit field and is
set using SPARC’s load and store instructions (LDA
and STA). By examining the processors ASI bits dur-
ing memory accesses,the controller can select between
different load/store and synchronization behavior.

SPARC provides two registers called WIM and CSR.
The window invalid mask (WIM) is a 32 bit register. The
context-specific bits in the mask indicate whether the con-
text is enabled or disabled. A 0 in the bit corresponding to

a context indicates that the context is disabled, whereas a
1 indicates that the context is enabled.

Since each context is allocated two registers, the WIM
allocates two bits to each context. For e.g. (11111100)
denotes context 0, (11110011) denotes context 1, etc. Since
Alewife has only 4 hardware contexts, only the last 8 bits
were considered for numbering the contexts, the other bits
being zero.

CSR (context status register) is a 32 bit register in which
the top 4 bits are zeros, bits 24 through 27 store the num-
ber of free contexts, bits 20 through 23 store the total num-
ber of contexts and bits 0 through 19 store a mask called
context empty mask (CEM). The simulator was modified
to include these registers. Note that the number of free
contexts is equal to number of 1’s in the CEM bit-vector.

Sparcle provides certain instructions which enables us to
efficiently implement switch-blocking:

1. RDWIM : This is a privileged instruction that reads
the WIM register contents into a register.

2. WRWIM : WIM can be written by this instruction.

3. NEXTF and PREVF These instructions are similar
to SAVE2 and RESTORE2 instructions, however
the new CWP (Current Window Pointer) is deter-
mined by the next alternate window which is enabled
i.e. for a PREVF, CWP - 2 or 4 or 6 is performed
based on which window is enabled. First CWP - 2 is
attempted and if that window is not enabled, CWP -
4 is attempted, etc. If no window is enabled, CWP re-
mains the same. The add behaviour as in SAVE and
RESTORE instructions is preserved and no traps
are taken. Analogously NEXTF performs CWP +
(2,4,6). Both NEXTF and PREVF are 1 cycle in-
structions. The windows are enabled only if the WIM
bits of the corresponding context are set to 1.

ASIM was modified in order to simulate these instructions.

4.1 Context Switching Mechanism

The following pseudocode represents the context switching
mechanism.

;; switch-blocking context switch

;; keep WIM mask bits of user frame in th22

;; e.g.: 00110000 for context 2

(rdwim th16)

(wrwim th22 th16)

; toggle invalid bits of current context

(rdpsr th16) ; save PSR

(nextf zero zero zero)

;go to next executable trap frame

(wrpsr th16 zero)

(jmpl (d@r thtpc 0) zero)

(rett thtnpc zero)

;; END of context switch.

6



4.2 Handling Synchronization Requests in

Switch-blocking

Switch-blocking is a signaling mechanism. Hence the dis-
abled thread has to be notified by another thread that the
request which caused it to wait has been satisfied.

Alewife supports synchronization through full/empty
bits and traps. The full/empty bit automatically serves
as lock for its associated memory location. Hence all syn-
chronizations are based on acquisition and release of locks.
This method can be used for efficient handling of failed syn-
chronization requests. The various synchronization con-
structs are handled as follows.

1. Semaphores and Mutex: These are almost iden-
tical in their implementation. Each of them has a
value slot, a full/empty bit, and a queue slot. If the
full/empty bit is 0, it indicates that a thread is access-
ing the semaphore or the mutex value and therefore
the other threads which want to access this value will
be queued up.

Hence when a thread finds a value of 0 in the
full/empty bit a context switch is effected and the
thread is put on the queue associated with that lo-
cation. When the full/empty bit is set to 1, the first
thread on the queue is allowed access to the value, the
context corresponding to this thread is restored and
WIM bit of this context is reset to 0.

2. J-structures and L-structures: If the full/empty
bit of a J-structure or a L-structure is 0, the reader
is forced to wait. The writer will write the value into
the J-structure and set the full/empty bit to 1 and
releases any readers waiting on it.

Hence for a J-structure or a L-structure, if the
full/empty bit is 0 for the reader, WIM bit of the re-
questing thread is set to 1. The requesting thread will
be queued up. Once the writer has set the full/empty
bit to 1, all the threads on the queue will have their
WIM set to 0.

3. Barriers: Let M be the total number of participants
in the barrier. Then the first M − 1 threads will have
their WIM bits set to 1. The arrival of the M th

thread will reset the WIM bits of the remaining M−1
threads.

4. Futures: A thread that requires the value of a future
is a consumer that is synchronizing with the thread
producing that value. Consumers will have to wait for
unresolved futures. When the value is available, the
thread that produced the value will release all those
threads that are waiting for that value.

Hence when a future is in an unresolved state, that is
the value of the expression, (future X), is not avail-
able, the WIM bit is set to 1. Once the expression is
evaluated, the WIM bit is reset to 0.

4.3 Enabling and Disabling of Contexts

4.3.1 Remote Memory Accesses

Initially, the WIM of an active context is 0. When a
thread issues a remote-memory-access, a cache miss trap
is generated. In the trap handler, the state of the context is
saved and the WIM bits of that context are set to 1. Next,
a context switch is effected by the use of the NEXTF
instruction which searches for a context whose WIM bits
are 0. When the remote-memory-access is serviced, the
WIM bits corresponding to that context are set to 0 and
the context is enabled.

To reset WIM in hardware so that no polling is neces-
sary, additional pins are needed on the chip: namely, the
hardware context to be enabled and an enable signal. Due
to the pipelining in the chip, this reset takes effect only
after a delay of 4 cycles. We assume that the Alewife con-
troller has been modified so that when the remote memory
access is complete, in addition to providing the data, the
controller sets the enable pin along with the context num-
ber.

For computing the service time of a remote-memory-
access, the following network delay model has been used
[AGA91]:

Tc = (1 +
ρB(kd − 1)

(1 − ρ)k2
d

(1 +
1

n
))nkd + B

Where
Tc = Network latency, for memory transactions.
ρ = Channel utilization.
B = Message size in flits.
n = Dimension of the network.
kd = Average distance a message must travel in each dimension.
Since there is a delay of 4 cycles due to the pipeline in

SPARCLE before the enabling of a hardware context, the
effective memory delay as seen by the processor is 4 cycles
longer. In this paper, the memory times given include this
extra 4 cycles.

4.3.2 Handling Remote Signalling

For remote signalling, we have assumed that the Alewife
controller has additional hardware to enable hardware
contexts when a synchronizing condition is satisfied.
Since all synchronization constructs are implemented using
full/empty bits, the failed thread would wait (spin-waited
in switch-spinning) on the local copy of the synchronization
location in the remote access cache. When the full/empty
bit is changed, a cache coherence transaction ensues; for
an efficient switch-blocking implementation, we have as-
sumed that this transaction has enough information to set
a hardware bit that enables the context as in the remote
memory access. This is definitely feasible as the current
Alewife controller has a remote access cache where pending
transactions have entries.

4.3.3 Overheads

Assuming the above hardware support, the additional
overhead involved in a context switch for an implementa-

7



tion of switch-blocking are the instructions that set and re-
set the WIM bits. Two instructions RDWIM and WR-
WIM are executed in succession to toggle the WIM bits
of the context. Hence

Csb = Csp + 2 = 16

.

5 Results and Analyses

In order to demonstrate the performance of the switch-
blocking waiting algorithms, simulations were run on
ASIM (Alewife’s Simulator). The following waiting algo-
rithms were considered for the simulation and Table ??
lists the default parameter:

1. Switch-spinning.

2. Switch-spinning/block.

3. Switch-blocking.

4. Switch-blocking/block.

5.1 ASIM

ASIM is a cycle-by-cycle simulator that simulates the pro-
cessor, the memory system and the interconnection net-
work. The organization of this simulator is as shown in
Figure ??. In order to execute a bench mark, the pro-
gram is compiled and linked with the run-time system to
produce executable object code. The APRIL simulator
executes the machine instructions in the object code. The
cache simulator is responsible for modeling the state of
the cache and the cache coherence protocol. The network
simulator is used to simulate the network latency incurred
whenever a cache transaction involves communication with
a remote cache.

ASIM can be run in two modes. Whenever an instruc-
tion that requires a memory transaction is executed, the
APRIL simulator can choose to consult the cache simula-
tor or not. In the complete mode, the cache simulator is
consulted and proper cache behavior is modeled. In the
processor-only mode the cache simulator is not consulted
and a cache hit is assumed. This effectively simulates an
ideal shared-memory system with fixed memory latencies.
This mode is sometimes needed to filter out the perfor-
mance benefits of memory latency masking.

5.2 Benchmark Programs

When the number of concurrently runnable threads is
guaranteed not to exceed the number of hardware contexts
available to execute them, the degree of threading is less
than or equal to 1, and we say that it is matched. When
the number of concurrently runnable threads is allowed to
exceed the number of contexts, the degree of threading can
be greater than 1, and we say that it is unbounded or un-
matched. Both matched as well as unmatched benchmarks
were run on Alewife.

The benchmark programs representing the three basic
synchronization types were run on Alewife. Following is a
description of the benchmarks ordered by synchronization
type.

5.2.1 Mutual Exclusion

Mutex : distributes worker threads evenly throughout
the machine. Each thread runs a loop that with some
fixed probability acquires a mutex, does some compu-
tation, then releases the mutex.

5.2.2 Barrier Synchronization

CGrad : The conjugant gradient method [BER89] is a
numerical algorithm for solving systems of linear equa-
tions. The data structure for the 2-D grid is mapped
evenly among processing nodes in a block fashion: this
mapping reduces the amount of communication be-
tween nodes.

The computation involved in each iteration of CGrad
is a matrix multiply, two vector inner products, and
three vector adds. The matrix multiply involves only
nearest neighbor communication because Poisson’s
equation results in a banded matrix. Each inner prod-
uct involves a global accumulate and broadcast. Be-
cause of the need to compute vector inner products
which involve accumulate and broadcast, it is natural
for CGrad to use barrier synchronization.

5.2.3 Producer-Consumer

MGrid applies the multigrid algorithm [BER89] to solve
Poisson’s equation on a 2-D grid with fixed boundary
conditions. The 2-D grid is partitioned evenly among
the processing nodes in a block-structured fashion.
The multigrid algorithm consists of a series of Jacobi
relaxations performed on grids of varying size.

Synchronization is implemented with J-structures.
The 2-D grid is partitioned into subgrids, and a thread
is assigned to each subgrid. The borders of each sub-
grid are implemented as J-structures so that threads
responsible for neighboring subgrids can access the
border values synchronously.

Cholesky factorization algorithms [ESW91] compute
the Cholesky factor of a sparse, symmetric and pos-
itive definite matrix. The problem is expressed as
Ax = b, where a vector x is to be determined, given
a matrix A and a vector b. One method of solution
is to determine a lower triangular matrix L, called
A’s Cholesky factor, such that A = LLT , and then
solve the two triangular linear systems Ly = b and
LT x = y. Here also, the data structure is mapped in
a block fashion.

Eshwar et. al. [ESW91] have proposed two algo-
rithms:

1. CFan-in (Cholesky Fan-in algorithm): all the
needed columns on the left are collected at the
current column

8



2. CFan-out (Cholesky Fan-out algorithm): all the
columns that need the current column are sent
the data

5.3 Simulation Results

The simulation results that were obtained by running
ASIM on the different waiting algorithms are tabulated
in this section. The two-phase algorithms were run with
α = 1. The message size (B) was assumed to be fixed at 8
flits.

In all the simulations, the memory access time was var-
ied from 8 to 40 processor clocks. In the case of matched
benchmarks, this time was varied from 8 to 200. A high
value of 200 was chosen for some simulations as in the case
of the current DEC 10000 Alpha multiprocessors, the bus
access time is already 340 ns (68 pclocks) and this does not
take into account the delays due to networking. Hence, a
memory access time of 200 is not an unreasonable projec-
tion for a remote-memory-access in some future designs.

We will compare switch-spinning against switch-
blocking and the two-phase switch-spin/block against two-
phase switch-block/block. All the benchmarks were writ-
ten in the Mul-T language. Complete and exhaustive sim-
ulations have been done only for multi-grid.

Mutex The simulation results for Mutex are presented
in Tables ?? and ?? for the matched case. These
simulations were run with a queue length of 32 (i.e.
M = 32).

MGrid The simulation results for Mgrid are presented in
Tables ?? and ?? for the matched case, and in Tables
?? and ?? for the unmatched case. These simulations
were run on a 64 x 64 grid.

CFan-in The simulation results for CFan-in are pre-
sented in Tables ?? and ??. These simulations were
run on a 128 x 128 matrix.

CFan-out The simulation results for CFan-out are pre-
sented in Tables ?? and ??. These simulations were
run on a 128 x 128 matrix.

CGrad The simulation results for CGrad are presented
in Tables ?? and ?? for the matched case, and in Ta-
bles ?? and ?? for the unmatched case. These simu-
lations were run on 64 x 64 grid.

5.4 Discussion

• The model presented in Section 3.1 is partly corrobo-
rated by the simulation results.

Figures ??, ??, ??, and ?? illustrate the plots of the
probablity of i contexts being alive. This probability
was computed by summing the time for which i con-
texts were enabled and dividing by the total execution
time. It can be seen that the graph has a exponential
tail similar to Fig ??, hence corroborating the model
developed in Section 3.1. It can also be noted that in
the graph obtained for CGrad resembles normal dis-
tribution, instead of the exponential distribution in

the other cases. In a barrier synchronization all the
participating threads have to be blocked, hence the
frequency with which all the contexts are disabled is
more.

• There is a slight decrease in the advantage of switch-
blocking over switch-spinning as memory access time
is increased from 8 to 40 in many of the simulations be-
fore it increases again after 40. This is very likely due
to the increased overhead of 2 extra cycles in switch
blocking that shows its effect as long as the number
of failed context switches is small. Once the latter
becomes larger with larger memory access times, the
extra overhead of 2 cycles is masked by the efficiency
of switch-blocking.

• Table ?? lists the average number of cycles wasted
by the processor when all the contexts are disabled.
The last column lists the percentage of time wasted
by the processor. It can be seen that this time is
negligible when compared to the total execution time,
hence the overhead involved in the implementation of
switch-blocking is small compared to its performance.

• Table ?? lists the overhead involved in the case of
switch-spinning, taking remote memory access into ac-
count. As the maximum percentage of wastage even
for a channel utilization of 0.90 and a memory access
time of 1000 is about 9.30%, remote memory accesses
do not play a major role in the performance of switch-
spinning. The benchmark that we have considered in
Table ?? is the matched MGrid. The total number
of memory accesses in the program was 64, 918.

6 Conclusions

Simulation results have shown that switch-blocking im-
proves the performance of Alewife by about 6-8% over
switch-spinning for the matched case and between 3-4% for
the unmatched case. The hardware overhead involved in
the implementation is nominal as instructions and registers
already provided by Sparcle were used except for an ad-
ditional line from the memory subsystem into the Sparcle
chip for handling switch-blocking due to long-duration re-
mote memory accesses. Some of the conclusions are listed
below.

• An increase in memory access time improves the per-
formance of switch-blocking only marginally, indicat-
ing that remote-memory accesses do not play a major
role in the performance enhancement. For this reason,
even though an increase in network channel utilization
leads to an increase in the network latency, the perfor-
mance of switch-blocking is improved only marginally.

• The two-phase switch-block/block algorithm performs
better than the two-phase switch-spin/block algo-
rithm by about 6-8% for the matched case.

• For the unmatched case, both switch-spin/block and
switch-block/ block perform much better than switch-
spinning. When the degree of threading is unbounded,

9



a potential for deadlock exists if polling is used ex-
clusively since we cannot guarantee that the thread
waited upon is not unloaded. Hence the two-phase
switch-block/block and switch-spin/block outperform
their single-phase counterparts.

• The current Alewife architecture uses the sequential
consistency model. It is clear that going to any other
model (like weak consistency) can reduce the num-
ber of context switches and thus increase performance
but the processor very rarely is completely idle from
the above results. Hence, reducing the context switch
time may be a better and simpler way of increasing
performance than going in for a more complex mem-
ory consistency model due to the complexity of such
an implementation and the small payoff.

References

[CHA91] Anant Agarwal, David Chaiken, Godfrey
D’Souza, Kirk Johnson, David Kranz, John Kubia-
towicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa,
Dan Nussbaum, Mike Parkin, and David Yeaung. The
MIT Alewife Machine : A Large-Scale Distributed-
Memory Multiprocessor. In Proceedings of Workshop
on Scalable Shared Memory Multiprocessor. Kulwer
Academic Publisher, 1991. An extended version of this
paper appears as MIT/LCS Memo TM-454, 1991.

[SMI81] B. J. Smith. Architecture and Applications of
the HEP Multiprocessor Computer System. SPIE,
298:241-248, 1981

[KRA90] Anant Agarwal, B. H. Lim, D. Kranz, and J.
Kubiatowicz. APRIL : A Processor Architecture for
Multiprocessing. In Proceedings 17th Annual Inter-
national Symposium on Computer Architecture, June
1990.

[KUB91] David Chaiken, John Kubiatowicz, and Anant
Agarwal. LimitLESS Directories : A Scalable Cache
Coherence Scheme. In Fourth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems(ASPLOS-IV). ACM,
April 1991.

[CHA90] David Chaiken, Craig Fields, Kiyoshi Kurihara,
and Anant Agarwal. Directory-Based Cache Coher-
ence in Large-Scale Multiprocessors. IEEE Computer,
June 1990.

[MOH90] Eric Mohr, David A. Kranz, and Robert H. Hal-
stead. Lazy Task Creation: A Technique for Increas-
ing The Granularity of Parallel Programs. In Proceed-
ings of Symposium on Lisp and Functional Program-
ming, June 1990.

[HAL90] Robert H. Halstead. Multilisp: A Language for
Parallel Symbolic Computation. ACM Transactions
on Programming Languages and Systems, 7(4):501-
539, October 1985.

[LIM91] Beng-Hong Lim. Waiting Algorithms on Large
Scale Multiprocessors. MIT/Technical Report. Feb.
1991.

[BER89] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and
Distributed Computation, chapter 2. Prentice Hall,
1989.

[AGA91] Anant Agarwal. Limits on Interconnection Net-
work Performance. In IEEE Transactions on Parallel
and Distributed Systems, 1991.

[ESW91] Kalluri Eswar, P. Sadayappan and V. Vis-
vanathan. Parallel and Direct Solutions to Sparse Lin-
ear Systems. In Proceedings of Parallel Computing on
Distributed Multiprocessors. , 1991.

[KAR90] A. Karlin et.al., “Competitive Randomized Al-
gorithms for Non-Uniform Problems,” Procs. of Ist
Annual ACM-SIAM Symp. on Discrete Algorithms,
Jan 1990.

[Dash]

[Dash91]

[NET87] D. Bertsekas and R. Gallager, “Data Networks,”
Prentice-Hall, 1987

10


