IEEE Region 10 Conference on Computer and Communication Systems, Septembe*l 990, Hong Kong

PARALLEL GAUSSIAN ELIMINATION FOR BANDED MATRIX -
A COMPUTATIONAL MODEL

V. Mani, B. Dattaguru,

N. Balakrishnan and T.S. Ramamurthy

Department of Aerospace Engineering
Indian Institute of Science
Banaalore 560 012, INDIA

Abstract - Parallel Gaussian elimination technique
for the solution of a system of equations Ax = C
where A 1is a banded matrix, is modeled as a
acyclic directed graph.

This graph is useful in
the identification of parallel operations, the
minimum absolute completion time for the solution

process and the minimum number of processors
required to solve it in minimum time. Hu's 1level
scheduling strategy is used for scheduling
operations to processors. The absolute minimum
completion time sets a limit on the speed-up. The
absolute minimum completion time is dependent on
the order of A matrix and is independent of the
bandwidth. The minimum number of processors
required to complete the solution process is fixed
by the bandwidth and is independent of the " order
of A matrix. A method of incorporating
communication aspects in between processors in
four kinds of interconnections is also presented.

1. INTRODU CTION
Reviewing the progressive advances and
development in computer architectures and
scientific computing, we observe an increasing
demand for parallel and distributed computing.
This trend has led the researchers from various
disciplines to focus their attention towards
development of parallel computational techniques.
There 18 also a great potential for using parallel

computers in structural mechanics [1]. The
developments of parallelism in numerical
algorithms can be found in references [2,3,4].

Ortega and Voigt [5] presents the development of

parallel algorithms for engineering problems.
Recently structural engineers have - developed
parallel implementation - of finite element
technique. Law [6] presents a parallel finite
element solution. In this method, the finite
element displacements are directly computed

without forming the global stiffness matrix on an
MIMD multiprocessing system. A parallel finite

element method and its implementation on a
hypercube computer is discussed in [7] and
parallel element oriented conjugate gradient

procedure 1is used to compute the displacements,
Chein and Sun [8] proposed two ‘parallel forming
procedures and a parallel Gaussian elimination
technique [9) for the solution of large system of
equations. Two practical parallel algorithms for
solving systems of dense linear equations on an
MIMD computer is given in [10].

There are three well defined modules in finite
element program: (1) pre-processing, (i1)
solution, (i11) post-processing. In this paper,
we deal with the solution module. We propose a
parallel Gaussian elimination technique for the
solution of 1linear equations. We consider the
direct solution of Ax = C, where A is a banded
matrix with half bapdwidth b. We model the
situation as a acyclic directed graph. In this

170

graph, operations

applied to

the nodes represent arithmetic
the elements of A and the arcs
represent the precedence relation that exists
among the operations in the solution process.
This graph gives the clear picture to the user ia
identifying the operations that can be done 1in
parallel. This graph is also useful in scheduling
operations to the processors. The absolute
minimum completion time and the lower bound on the
minimum number of processors required to solve the
equations in minimum time can be found from it.
Speed-up approaches a limit using parallel
processors, set by the absolute minimum time, 18
also brought out from this graph.

For scheduling operations to processors Hu's
[11] 1level scheduling strategy 1is used. The
minimum number of processors is obtained from the
directed graph in [12]. The task graph is also
useful in finding the number of communications
needed in between the processors for the solution
in a multi-processor architecture,

2. PARALLELISM IN GAUSSIAN ELIMINATION
FOR BANDED MATRIX

We consider the direct solution of

Ax = C (1)
using Gaussian elimination, where
A= laij] i=1,2,...,n; J=1,2,...,0¢1 (2)
and 3 a4l ™ C1 i=1,2,...,n 3)

Also A matrix is banded with half bandwidth b as
shown in Fig. 1. In general Gaussian elimination
has two steps [13]: (i) triangulation and forward
elimination TF, (ii) Back substitution BK. They
are described by the following procedures.

Procedure TF/Triangulation and Forward Elimination

begin for k = 1 step 1 until n-1 do
begin '
for alla . #0, k¢l < J < n+l do

a1J - akJ/akk

foralla, .a, . #0, k+1<1i<n;

e B B T Py
815 % %13 T k%4 y

8,041 ™ %0041 %

(4)

(5)
(6)

end
end

Procedure BK/Back substitution
begin for k = n step-1 until 2, do
begin if &, + # 0 then
for all a 80, 1 ¢ 1 ¢ k-1, do

end 81,041 = 24,041 T B1k %%, n+l
for all k, 1-<k<n

X" ak,n+l (8)

CH2866-2/90/0000-170 $1.00 © 1990 IEEE

¢))

For ease of understanding, we will show the
operations that can be done in parallel [13]

It 1is to be noted that the operations (4),
(5) and (7) can be done in parallel and they are
denoted below.
TF: for k= 1,2,...,n
or k+l < j < n+l
aij - nij/akk divide in parallel
or ktl <1 ¢ n, ktl < j < n+l
aij = aij - aij‘aij update in parallel (9)

BK: for k = n, n-1,
[forl_gigk-l

a =8 - a, .a update in
i,n4] i,n+1 ik “k,n+l parallel.

veey 2

We shall refer to each operation specified by
(4) and (6) as divide operation and each specified
by (5) and (7) as update operation. From (9) it
can be seen that, if there are sufficient
processors the operations can be executed
simultaneously. Each outer do loop in
triangulation or back substitution is referred to
as a pivoting step. There are n pivoting steps in
forward elimination and n-1 in back substitution
process.

We assume that each divide or update operation®
takes one unit of time. It is well known for a
full matrix, that the parallel solution of
equation (1) takes & minimum of (3n-2) timé units,
if an unlimited number of processors are provided.
Since A is banded, the minimum completion time is
expected to be smaller. We show that the minimum
completion time for a banded matrix is also (3n-2)
and it is independent of bandwidth. This minimum
completion time sets a limit on the speed-up.

3. TASK GRAFH

diviﬁg cgﬂePStfgﬂn 53 (g ‘e gmgn§1v22j8tggn§6t tg:
executed until the latest operations on a and
a have been completed at some previous jstep.
kailarly. it is evident from (5), the execution
of an update operation on a, . can only begin after
the latest operations on 8% By and 8, have
been completed. Wing and ﬂwang [11], uSdd the
acyclic directed graph.for parallel solution of a
sparse matrix and derived some interesting
properties of the graph. There exists a set of
precedence relation among the operations. It is
convenient to represent these relations in a multi
task system as a directed graph [14], G(V,E)
consisting of a set of nodes V and a set of arcs E
defined as follows [13]: .

V= {vy | v, is a node if and only if it
represents a divide or update
operation in the solution process}

E= {(vi,v) |(vi, v.) is an arc if and only if v,

. 3 requireJ the results of v. and (i
V.,V are operations i forward
eiimjnation process or (ii) v_,v_ are
operations on elements 8, n+l ind the
back substitution process]).

We shall refer to G(V,E) as & "task graph" and the
three terms "operation", "task", and "node" will
be used interchangeably. With the assumption that
the execution of each task takes one unit of time,
the task graph is a "unit execution time" system.

For the A matrix shown in Fig. 1, the task
graph for the forward elimination process is shown
in Fig. 2. Task graph represents the solution

171

process of the equations in Fig. 1. Zero elements
of A matrix are not shown. The solution process
consists of the following operations:

Node number Operation
1 a,, =a.. /a
2 212 I 2127711
13 13711
3 a;5 = a.3/a
4 17 17 13
822 = 87; - 12
5 a - - a,).a
e 223 2 o237 210013
2 L e TR
8 a32 - a32 _ a31'812
9 33 33 31°713
a = - a .a
37 37 31°717
10 a,, = a>./a
23 23722
11 82, = 83,732
12 a,, = a-,/a
13 27 = 827/
833 ¥ 833 = 855.8,4
14 a = g8 - 8,,.8
34 34 32°724
15 837 = 83 ~ a3;.a5,
16 a,, =a,, - aj..a
17 543 - a43 - ak2 a23
18 844 - &4 _ a102'824
47 47 42°727
19 a,, =a.,/a
34 34,733
20 a,. =a,_/a
35 35 33
21 837 = 837/83
22 a =a,, - 2 .a
23 844 - aAA _ a43 a34
% a45 - 345 - a63'335
P 47 7 %47 T %43-93
B854 = 854 ~ 853-835
26 ags
= 853 T 85,08,
27 8cy -
2 o 257/3 53837
29 a45 - 865/ b4
46 = 246/%44
30 -
N 247 7 2ur/oy
55 = 955 T 854:8,5
32 8., = a .. - aZ,.a
56 56 54°746
33 a57 = a:, - a2’ .a
34 a - a57 - 854 847
65 65 64°745 '
35 a = g -8 a
36 66 66 64°%46
a.,=a. -a, .a
67 67 64°747
37 ac, = /a
56 56°,°55
38 a5 = ag;/a;
39 866 = 8 - 2 a
20 a56 - 566 T 265.%56
67 67 65°°57
41 a,, = a../a
67 67766
Back Substitution
42 ‘a = g S a .a
43 ag; - a§; - a46.a67
44 a2’ « ad7 - 856 a67
P 237 = g37 T 235357
46 %7 = 247 ~ 45857
- a .a
47 27 27 24°747
a = a - a .a
37 37 34747
48 al, = a’, - al..a
49 17 17 13°%37
827 = 87 - 853.a3,
50 8,, =8, - ai..a
17 17 12°%27

In the graph the divide operations
indicated by squares and update operations by
circles. Note that (by definition) there are mo
arcs from the forward eliminstion steps to back
substitution steps except the one through the node
41, which is a distinct node.

4. PROPERTIES OF TASK GRAPH

are

Referring to the algorithm in Section 2, we
see that the task graph can be constructed in
stages. Let G (V,, E) be a subgraph constrycted .
after the compket on gf pivoting step k. Then Gn
is the subgraph representing forward elimination.
In this, there are 2n-1 steps involved and there
are n-1 steps in the back substitution process.
It is proved in [13] that this graph is acyclic.
The definition in [13] states that "A path of
length k from node v, to node v, is a sequence of
k nodes Vepr Vpge ceee ¥V , such”that v and

v -y
r i
Ve = vy Bha (¥, v DEE for all 17 a ka1t

An arc (vi, v.) 1is redundant (transitive
[14]) if there exidts a path of length greater
than two from v, tov.,. The reason for the
emphasis on redundant ards is that they illustrate

the existence of an optimal scheduling strategpy
using two processors for unit execution time.
This strategy 1is optimal only if all redundant

arcs in the graph are eliminated by appropriate

task scheduling to multiple processors [15]. The
depth of a node v, [11-13] is the length of the
longest path from Ehe initial node to v.. In fact
it is the earliest time at which can be
executed. The depth of the task graph G(V,E),

denoted by D, is the longest path in G. It is the
minimum completion time of the solution process
even if an unlimited number of processors are
used. The level number uy of a node v, is defined
as
n, = D+l - max I L, is the length of a path
i k -
k from v, to a terminal
node

The level number is simply the latest time by
which node v, must be processed in order to
complete the task graph in minimum time D.

Lemma 1: The longest path D, for the task graph
G(V,E) of a banded matrix is always 3n-2.

Proof: For a given value of k in the forward
elimination, the divide nodes are at level p(p =
2k-1); the update nodes for i = k+l are at level

p+l and the update nodes for i > k+l are at level
p+2. The total number of levels in the _forward

elimination is (2n-1). There are (n-1) steps
(also n-1 levels) in the back substitution. So
there are 3n-2 levels in the solution process.
There are arcs only from a node at level p to
nodes at level p+l and p+2. We also know that
there 1is atleast one node at every level.
Therefore the longest path is the one which is

passing through the nodes at all levels and hence
it is 3n-2. It is also known that for a full
matrix, the solution takes a minimum of 3n-2 time
units [13].

Lemma 2:

The 1longest path 1is independent
bandwidth b.

of

Proof: In the forward elimination process, we see
that for every value of k, there are b divide
operations and b*(b-1) update operations. If the
value of bandwidth b is increased, it only
increases the number of nodes at a given level and
it does not increase the number of levels. In the
banded matrix case the number of levels is the
same as D. The longest path pass through at least
one node at every level. Hence the longest Fpath
D (which is 3n-2) is independent of bandwidth.
Also this is the reason that minimum time for the
solution process is 3n-2 for both banded and full

matrix, if provided with an unlimited number of
processors.
The task graph for the banded matrix case is

also acyclic, and the properties derived for
sparse matrix in reference [13] are applicable to
banded matrix also. The total number of nodes 1in
the Gaussian elimination process are:

2 b b-1
(ab)y Z(-1)2 + (a-b) (b-1) + E;(b-1) (10)

In [12,16], lower bounds on the minimum number of
processors required to complete a general task
graph and lower bounds on the completion time if a
fixed number of processors are used are derived.
These results are very useful and we apply these
results to our banded matrix case. Let p* be the
minimum number of processors required to -complete
the task graph in D time units. Then from [12]

172

The speed-up [8]

(1)

p* > max

fi
a kEI nk/i]

where n,_ is the number of nodes at level k. We
know . at any level the number of nodes is a
function of half bandwidth b. Increasing b,

increases the number of nodes at any level end
thus results in an increase in the value of p* in
equation (11). Hence, we can say that the optimal
number of processors required to complete the task
graph in D time units is fixed by the value of

half bandwidth b. Also increase in n only
increases the value of D and not the number of
nodes at any level. Let t* be the minimum
completion time to process a task graph with p
processors. Then from [12],
i

I n

i=1 ¥
t* > max | ~-—-———- +D-1 (12)

i P

is defined in most parallel
algorithms as

user time for ane processor

speed-up =
user time for N processors

From the task graph (without considering the
communication time in between processors), we can
see that the user time with one processor is the
total number of nodes in the task graph (unit
execution time). We have also proved that D which
is (3n-2) is the longest path in the graph, is the
minimum completion time of the solution process if
an unlimited number of processors are used. Hence
the maximum speed-up that can achieved 1s

user time for one processor

maximum speed-up =
D,the longest path in the graph

Also the efficiency of a parallel algorithm is
defined

speed-up

Efficiency =
number of processors

Now we will show Amdhal's law [17,18] and 15.
significance in our banded matrix case. Amdhal's
law states: "A small number of sequential

operations can effectively limit the speed~up of a
parallel algorithm". Let f be the fraction of
operations in a computation that must be performed
sequentially, where 0 ¢ f < 1. It is easy to see
that the maximum speed-up achievable by a parallel
computer with p processors is

1
S (~——mm———— (13)
£+ (1-£)/p
For example, if the sequential operations is 10%
of the total computation, then the maximum
achievable speed-up 1is 10. We cen see from

equation (13) that with an infinite number of
processors, the maximum achievable speed-up is
1/f. The same result is also obtained in our
analysis. From our analysis, we. can see _the

relation of f as

D the longest path in the graph
fw

total number of nodes in the graph

and the meximum.speed-up achieveble is 1/f,

matter how many processors a computer has.

no

5. IIIUSTRATIVE EXAMPIE

Example 1: A 10x10 matrix with half bandwidth 3
is considered. There are 77 nodes in the forward
elimination and 17 nodes in the back substitution.
The minimum completion time (D) is found to be 28.

The minimum number of processors (p*) required to .

complete the task graph in 28 time units is
obtained as 5. Table 1 shows the minimum
completion time, speed-up and efficiency with the
increase 1in number of processors. Beyond 5
processors the speed-up is the same. This can
8lso be obtained from Amdhal's law as the maximum

speed~up achievable. Teble 2 shows the effect of
bandwidth on the maximum achievable speed-up. A
10x10 matrix is considered and the bandwidth is
changed from 2 to 10 and the results are shown in
Table 2. In Table 3, for a given bandwidth the

values of n 1s changed and the results are shown.

From this, we can say that for an increase in
bandwidth, there is a substantial increase in
maximum achievable speed-up. On the other hand,
for a given bandwidth, for an increase in n, the
increase in maximum achievable speed-up 1is very
marginal. This fact is also observed 1in truss
problem considered in [8). In practice, the total
user time increases, beyond the optimum number of
proczssors, because of the communication time in
between processors. .

Scheduling: References [11,13], gives the optimal
scheduling strategies to process a task graph. We
use the modified scheduling strategy of [11]. We

define a ready-task [13] to be one whose immediate
predecessors have all been processed. The
wodified level scheduling [13] is as follows: -
) among all the ready tasks, schedule the one
with the smallest level number and
if there is a tie, schedule ‘the one with the
largest number of immediate successors. This
algorithm 1s applied to the above example 1,
and the schedule with 3,,?rocessor3 is shown
in Fig. 3. In Fig. 3, a '*' in the schedule
indicates that the processor is idle and the
number indicates the operation to be done.

6. COMMUNICATION ASPECTS

In the previous sections, the task graph is
used to compute the absolute minimum time anq the
optimal number of processors to complete it in
minimum time are discussed. In this section, we
will incorporate the communication time in between
processors. This analysis is important because in
a parallel processing environment, the overall
execution time is the sum of computation time and
the interprocessor communication time. Our
studies are with respect to loosely coupled
system, where communication in between processors
occurs by exchange of messages through a network
and not through a shared main memory as in the
case of a tightly coupled system.

Let .t be the computation time for
node (divisi8BPor update) in the task graph.
t be the transfer (communication) time to
tf8NSfer one value from one processor to its
neighbor. Because of our scheduling algorithm,
each computation done by a processor has to be
communicated to all the remaining processors. The
time taken to complete the task graph with p
processor is t*. Hence there are (t*-1) parallel
data transfers in the algorithm. Hence the total
time for the parallel algorithm with p processor
is defined as

one
Let

total time = tcomp (14)

wvhere d is a factor that depends on the
interconnectien network. d is the maximum number

Wl A tcomm(t'—l)*d

173

[8)

of steps needed in the interconnection network to
send a data from one processor to all the other
processors. We consider four types of
interconnection networks with a limited number of
processors. The four type of networks considered
for time complexities are: mesh array, 3-D mesh
array, barrel shifter and cube connection array.

For mesh connected network (Illiac IV), with
p processors, it takes d steps to route the data
from the processor to any processor, where d is

upper bounded by d < p-1. For cube connected
network with p processors the value is: d < log

p. For barrel shifter networks d 51}83 p/2 an&
for three dimensional mesh d < 1.5 p ?18]. Now

with the value of d corresponding to the network
type, we can exactly compute the total time. We
can also see from equation (14) that t* reaches a
maximum velue D with the increase in number of
processors. The value of d increases with the
increase in number of processors. Hence the total
execution time decreases with the increase in
number of processors only up to a certain number
of processors.
7. CONCLUSIONS

The usefulness of acyclic directed graph in
identifying parallel operations, computing the
minimum completion time, the minimum number .of
processors to complete the graph in minimum time
and the maximum achievable speed-up are presented.
The usefulness of this graph in improvement ,of
program efficiency is discussed in ([19)}. The
absolute minimum completion time is dependent on
the number of equations and independent of the
bandwidth. On the other hand, maximum achievable
speed—up. and the optimal number of processors
required to complete the job in minimum time are
dependert on the half bandwidth and is independent
of the number of equations. A method of
incorporating the interprocessor communication
time and its effect on the overall computation
time 1is also brought out. This study is useful
for engineers working with large system of
equations on a multiprocessor syatem.

REFERENCES

[1] A.K. Noor and S.N. Atluri, ‘Advances and trends
in computational structural mechanics', AIAA
Jnl. 25, 1987,.pp. 977-995.

[2} D. Heller, 'A survey of parallel algorithms 1n

numerical linear algebra', SIAM Review, 20

1978, pp. 740-777. '

p} W.L.Miranker,'A survey of parallelism in numer-
ical analysis',SIAM Review,13,1971, Pp.524-547,

[4] X.A. Gallivan, R.J. Plemmons and "A.H. Sameh.

"Parallel algorithms for dense linear algebra

computations", SIAM Review, Vol. 32, No. 1, pp.

54-134, March 1990.

J.M. Ortega and R.G. Voigt, 'Solution of

parallel differential equations on vector and

parallel computers', NASA Report CR.172500 or

ICASE Report No. 85-1, 1985.

K.H. Law, 'A parallel finite element

method', Computers and Structures,

pp. 845-858.

W.T. Carter Jr., T.L. Sham, K.H.

parallel finite element method and its

prototype implementation on a hypercube',

computers and Structures, 31,1989, pp. 921-934,

[]

solution
23, 1986,

Law, 'A

]

[8] L.S. Chien and C.T. Sun, 'Parallel processing
techniques for finite element analysis of
nonlinear large truss structures', Computers

and Structures, 31, 1989, pp. 1023-1029.
L.S. Chien and C.T. Sun, 'A parallel Gaussian
elimination procedure for finite element
analysis', NASA Technical Report, NASA Langley
Research Center, July, 198).

R.E. Lord, J.S. Kowalik and S.P. Kumar,
- 'Solving linear algebraic equations on an MIMD

(9]
[1o]

i

computer', Journal of the Association tor
Computing Machinery, 30, 1983, pp. 103-117.
11} T.C. Hu, 'Parallel sequencing and assembly
line problems', Operations Research, 9, 1961,
pp. 844-848. :
[12] C.V. Ramamurthy, K.M. Chandy and M.J.
Gowzalez, Jr., 'Optimal scheduling strategies
in a multiprocessor system', IEEE .Trans. on
Computers, C-21, 1972, pp. 137-146.

{13] O.Wing and J.W. Huang, 'A camputation model of
parallel solution of linear equations', IEEE
Trans.on Computers, C-29,1980, pp.632-638.

[14) E.G.Coffman, Jr.(Ed.), 'Computer and Job Shop
Scheduling Theory', New York, Wiley 1976, Chap
I, pp. 1-50.

schedule', in Computer and Job Shop Scheduling

Theory, E.G. Coffman Jr (Ed.) New York, Wiley,

1976, pp. 51-99.

EG] E.B. Fernandez and B. Bussel, 'Bounds on the

number of processors and time for

multiprocessor optimal schedule', IEEE Trans.

on Computers, C-22, 1973, pp. 745-751.

E7] M.J. Quinon, 'Designing Efficient Algorithms
for Parallel Computers', McGraw-Hill, New
York, 1988.

ﬁ8] Hwang, K. and Briggs, F.A., 'Computer
Architecture and Parallel Processing',
McGraw-Hill, New York, 1984.

[i9]c.o. Yeng end B.P. Miller,
measurement for parallel and

' programs: A structured and automatic
approach”, IEEE Transactions on Software
Engineering, Vol. 15, No. 12, Dec. 1989, pp.
1615-1629. «

"Per formance
distributed

Table 1: Performance measures of interest
Wumber of Minimum Speed-up Efficiency?®
processors, completion ' S

P time

T 9% 1,00 100

2 48 1.9583 97.92

3 36 2.6111 87.04

4 30 3.1333 78.33

5 28 3.3571 67.14

6 28 3.3571 55.95

7 28 3.3571 47.95

8 28 3.3571 41.96

9 28 3.3571 37.30

10 - 28 3.3571 33.57

Table 2: Effect of bandwidth on speed-up; n = 10

bandwidth total number D f max.speed-up
of nodes
2 46 28 0.6087 1.6429
3 94 28 0.2929 3.3571
4 150 28 0.1867 5.3571
5 210 28 0.1333 7.5000
6 270 28 0.1037 9.6429
7 326 28 0.0859 11.6229
8 374 28 0.0749 13.3571
9 410 28 0.0683 14.6429
10 430 28 0.0651 15.3572
Table 3: Effect of n on speed-up; b =4
n D total number f max. speed-up
of nodes S
10 28 150 0.1867 5.3571
15 43 245 0.1755 5.6977
20 58 340 0.1706 5.8621
25 73 435 0.1678 5.9389
30 88 530 0.1660 6.0227
35 13 625 0.1648 6.0680
4 118 720 0.1639 6.1017
45 133 815 0.1632 6.1278
50 148 910 0.1626 6.1486

cessors

!

174

u g1zt 87
:21 822 %23 9 ay;
a a a a
31 32 33 34 35 837
82 :43 8, 845 84 847
- P53 G54 05 lse 07
64 865 a66 867
Fig. 1 Matrix under consideration
| 2 3
4) (8) (&l (71)18) A8
3y (1ay (s (16) _(17) (18
23 4
9 3
3l 3 3
8
4 |
Fig. 2. Task Graph
3 3
pepunanaBYRY
2510 %0 w1 22 25 26 31 34
] 4 1 813 16 17 s T
1 2 3 4 3 6 7 8
time i
65 66 69
39 42 47 48 51 56 57 60 % 71
41 46 45 50 53 s4 59 64 62 08 %

time
- » * * * »

s # w0 43 85 47 89
7% 16 * 79 81
737577738082863633
25 2 28 29 30 3
—'—'—""“'—’thm

Fig. 3 Schedule with 3 processors

91
90

%
14 15 16 17 181920 21 22 23 2%
amnea—

PR
93 *
2 94

