
Co-Scheduling Hardware and Software Pipelines *

R. Govindarajan Erik R. Altman Guang R. Gao
Supercomputer Education & IBM T.J. Watson School of Computer Science

Research Centre Research Center McGill University
Indian Institute of Science Yorktown Heights, NY Montreal, Quebec
Bangalore, 560 012, India 10598, U.S.A. H3A 2A7, Canada

govind@serc.iisc.ernet.in erik@watson.ibm.com gao@cs.mcgill.ca

Abstract

In t h i s paper w e propose CO-Scheduling, a f r a m e w o r k
f o r s imul taneous design of hardware pipelines struc-
t u r e s and software-pipelined schedules. T w o i m p o r t a n t
components of t h e Co-Scheduling f r a m e w o r k are:
(1) An extens ion t o t h e analysis of hardware pipeline
design t h a t m e e t s t h e needs of periodic (or software
pipelined) schedules. R e s e r v a t i o n tables, forb idden la-
tenc ies , collision vectors, and s ta te diagrams f r o m
classical pipeline theory are revisited and extended t o
solve t h e n e w problems.
(2) An efficient m e t h o d , based o n t h e above ex tens ion
of pipeline analysis, t o p e r f o r m (a) software pipeline
scheduling and (b) hardware pipeline reconfiguration
w h i c h are m u t u a l l y “compatible ”.

T h e proposed method has been i m p l e m e n t e d and pre-
l i m i n a r y exper imenta l results f o r 1008 kerne l loops are
reported. Co-scheduling successfully obtains a sched-
ule f o r 95% of t h e s e loops. T h e m e d i a n t i m e t o obtain
t h e s e schedules i s 0.25 seconds o n a Sparc-20.

Keywords:
classical Pipeline Theory, Go-Scheduling, Pipeline Ar-
chitecture, Software Pipelining, VLIW Architectures.

1 Introduction

Pipelining is one of the most efficient means of im-
proving performance in high-end processor architec-
tures. In order to achieve higher throughput and
greater instruction-level parallelism, modern micro-
processors contain deeply pipelined function units with
arbitrary s t ruc tura l hazards. Historically, design tech-
niques for hardware pipelines with structural hazards
have been successfully developed and used in vector

*This work was supported by research grants from NSERC,
Micronet - Network Centers of Excellence, Canada, and the
President’s Grant, Memorial University of Newfoundland, St.
John’s, NF, Canada.

and pipelined supercomputers. Classical hardware
pipeline design theory developed more than 2 decades
ago was driven by this need [a, 61.

In the past decade, technology advances have made
it feasible to design very aggressive arithmetic and in-
struction pipelines in commodity microprocessor ar-
chitectures, e.g. superpipelined architectures and su-
perscalar architectures. In the meantime, a compil-
ing technique known as software pipelining has be-
come increasingly popular for aggressive loop sched-
uling for these architectures. A software pipelined
schedule overlaps operations from different loop itera-
tions in an attempt to fully exploit instruction level
parallelism. A variety of software pipelining algo-
rithms [lo, 7, 3, 5, 12, 21 have been proposed which
operate under resource constraints. An excellent sur-
vey of these algorithms can be found in 191.

In this paper, we propose a design methodology
which integrates the scheduling of hardware and soft-
ware pipelines in a unified framework - termed Co-
Scheduling. The basic observations that lead to the
Go-Scheduling framework are:
Observation 1: Classical hardware pipeline schedul-
ing theory cannot be directly applied in the presence
of software pipelining. The critical missing link is that
hardware and software pipeline cycles may have dif-
ferent periods. (Motivating examples for this are pro-
vided in Section 2.)
Observation 2: Luckily, hardware pipeline schedul-
ing theory may be extended to consider the constraints
of software pipelined schedules. These extensions pro-
vide key insights and heuristics for improving software
pipelining. In particular, by analyzing the reservation
table of a hardware (arithmetic) pipeline, we can de-
rive Ugood” initiation sequences that better utilize the
pipeline. Use of such initiation sequences narrows the
search space of software pipelined schedules, which in
turn, reduces the time to construct a schedule. Fur-
ther, use of “good” initiation sequences may improve

0-8186-7237-4196 $5.00 0 1996 IEEE
52

mailto:erik@watson.ibm.com

the initiation interval (11) in resource-limited loops.
We give a number of motivating examples in Section 2.

Based on these observations, the Co-Scheduling
framework contains two components:
(1) We advance the classical pipeline design analysis
by first extending reservation tables to cyclic reserva-
t i o n tables (CRT). This allows information on the soft-
ware pipeline initiation interval I1 to be embedded in
the hardware pipeline structures. Important concepts
such as f o rb idden latencies , collision vectors , and state
diagrams from classical pipeline analysis are revisited
and extended for CRTs. This theory facilitates identi-
cation of good initiation sequences that maximize the
utilization of pipeline stages.
(2) On the software (compiler) side, we use a Modulo
In i t i a t ion Table (MIT) which represents only the ini-
tiation pattern of a software pipelined schedule: the
resource usage and the structural constraints imposed
by the reservation table are captured succinctly by
the CRT. Based on the MIT, we present an efficient
method for both constructing the software pipeline
schedule S and “adjusting” the configuration of hard-
ware pipeline delays to “match” the initiation interval
(11). This makes the task of scheduling for architec-
tures involving deep pipelines easier.

To demonstrate the feasibility of the co-scheduling
approach and its usefulness in software pipelining, we
have implemented the proposed method. The major
observations are:

By making use of the good initiation sequences
discovered by CO-Scheduling, a schedule was
found for 95% of the loops within a small exe-
cution time. The median of the execution time
was 0.25 seconds. These results are encouraging
considering the fact that our experiments used
long reservation tables (corresponding to deep
pipelines) with arbitrary structural hazards.

The CO-Scheduling approach allowed greater
pipeline utilization and increased number of initi-
ations per unit time, thus, possibly reducing 11.

Our delay insertion approach was a success, allow-
ing a smaller I1 than would otherwise be possible.

The CO-Scheduling framework holds great promise
for future microprocessor design where aggressive
pipelining will be used to accomplish very high proces-
sor throughput. Microprocessor vendors are already in
the process of designing deeply pipelined ALUs with
more than 10 stages. As these high-speed pipelined
stages are reused for various functions, arbitrary struc-
tural hazards are introduced. This, in turn, requires

complex instruction scheduling to exploit the avail-
able instruction-level parallelism. The CO-Scheduling
framework proposed in this paper is especially use-
ful for scheduling the new generation deeply pipelined
function units.

In the following section we motivate the need for
the CO-Scheduling framework with a number of exam-
ples. In Section 3, the classical pipeline theory is revis-
ited in the context of software pipelining. We present
the CO-Scheduling framework in Section 4. Implemen-
tation of Co-Scheduling and some preliminary results
are discussed in Section 5 . Section 6 compares our ap-
proach to other related work. Concluding remarks are
presented in Section 7.

2 Background and Motivation

In this section we motivate the need for co-
scheduling. We make two assumptions in this paper:
first, only single- funct ion or s ta t ic pipelines [6] are
considered; second, as in [8], it is assumed that the
stages of a pipeline are independent.

2.1 Background

In software pipelining, we focus on periodic l inear
schedules under which an instruction i in iteration j
is initiated at time j * I1 + ti, where I1 is the ini-
t ia t ion interval or period of the schedule and ti is a
constant. Like most software pipelining methods, we
assume f i zed mapp ing where an instruction i (from all
iterations) will always be executed on the same func-
tion unit (FU) during the course of the loop execution.

The minimum initiation interval (MII) is con-
strained by both loop-carried dependences (or recur-
rences) and available resources [lo, 7, 5, 9, 21. Loop-
carried dependences put a lower bound, RecMII, on
MI1 [lo, 71. Another lower bound ResMII on MI1 is
enforced by resource constraints. Suppose an instruc-
tion uses a pipeline stage s of a function unit (FU) type
r (e.g. ADDER), for cl,.,, cycles. If there are N,. in-
structions that execute on FU type r and there are F,
FUs, then clearly any schedule will have I1 greater than
[N, *d,.,,/F,]. Thus ResMII is the maximumof this
bound taken over all stages and FU types:

And,
MI1 = max (RecMII, ResMII). (2)

Clearly, any initiation interval I1 for which a
resource-constrained schedule exists is greater than or
equal to MII. i.e. I1 2. MIL

53

Consider the reservation table shown in Figure l(a).
The execution time of an instruction in this FU is 6
cycles. Suppose we are interested in constructing a
schedule with I1 = 9. To do this we extend the reser-
vation table as shown in Figure 2(a). Notice from Fig-
ure 2(a) that initiation of instructions a t time 0 and
1 is permissible [6] . The resource usage of these two
initiations are represented, respectively, by 0 and 1
in the table. As the Table indicates, once two oper-

Figure 1: Example Reservation Tables

Next we briefly review existing software pipelining
methods that are capable of handling structural haz-
ards [2, 7, 51. In general, these methods construct
a Modulo Reservation Table (MRT) to keep track
of the resources used by already scheduled instruc-
tions. The MRT contains I1 rows and one column for
each resource. If an FU contains structural hazards,
each pipeline stage must be considered as a different
resource in the MRT. Given the MRT, the existing
scheduling algorithms, henceforth referred to as Gen-
eral Scheduling Algorithms (GSA), proceed by
scheduling operations based purely on the availabil-
ity of resources. Which operations get scheduled first
is decided by a priority function which differs across
various software pipelining algorithms. If an oper-
ation cannot be scheduled, the algorithm selectively
unschedules a number of operations and re-schedules
them again.

In hardware pipelines, the resource usage of various
pipeline stages are represented by a two dimensional
Reservat ion Table [6] . If two operations entering a
pipeline f cycles apart would subsequently require one
(or more) of the pipeline stages at the same time, f is
termed a forbidden latency. Operations separated
by permissible latencies have no such conflicts.

A collision vector has length equal to the pipeline
latency and contains a 1 a t all forbidden latencies, and
a 0 a t all permissible latencies. A state diagram rep-
resents the listing of all initiation sequences that are
permissible. Refer to [6] for the construction of state
diagrams. Analysis of the state diagram reveals what
initiation sequence(s) or latency sequences maxi-
mize the utilization and throughput of the pipeline.
Further details can be found in [6] .

2.2 Need for Analysis of Pipeline Struc-
ture

To the best of our knowledge, none of the existing
software pipelining approaches [2, 7, 51 make any ex-
plicit use of the analysis developed in classical pipeline
theory. With the help of a few examples, we demon-
strate that rectifying this omission can greatly improve
the schedule produced.

ations are started in the pipeline (at time 0 and l),
no further operations can be started until the next
iteration begins at time 9. Notice that starting an op-
eration at time step 6 will require the use of Stage
1 at time IU (i.e. 6 cycles after the third x in the
Table 2(a)). However, this will interfere with an oper-
ation (1*) from the second iteration, and hence is im-
permissible. More generally, this requirement - that
no resource be used by a single iteration at times that
are congruent modulo I1 - is known as the modulo
scheduling constraint [lo, 91.)

Analysis of the reservation table reveals that initia-
tions at time steps U, 3, 6 are permissible and better
utilize the pipeline-handling 3 operations every 9 cy-
cles as depicted in Figure 2(b). Compared to the (0 , l)
initiation which gives a throughput of 2/9, the (0 ,3 ,6)
initiation improves the throughput by 3/9 = 1/3. The
General Scheduling Algorithm (GSA) outlined above
uses any permissible latency sequence, not necessar-
ily an optimal one, in terms of the throughput of the
pipeline. If the FU in this example is a critical resource
and if a non-optimal greedy initiation, like (0, l), was
chosen, then the GSA may have to make a large num-
ber of retries or may even fail to produce a valid sched-
ule even though one exists at the given 11. Thus know-
ing and using the optimal latency sequences in the
software pipelining method facilitate producing bet-
ter schedules and producing them faster (i.e. in less
compile time).

The GSA models individual stages in an FU as
separate resources in the Modulo R e s e r v a t i o n Tables
(MRT). As a consequence, for a modern VLIW with
less than 10 FUs, the number of columns in the MRT
can be very high, increasing the complexity of sched-
uling. On the other hand, our use of pipeline theory
avoids initiations that result in a resource conflict, fa-
cilitating the pipelined function unit to be modeled as
a single resource.

Lastly, the ResMII obtained from Equation 1 is
only a loose bound. For example, in the reservation
table of Figure l(b), the maximum usage of any stage
is only 2. Thus the ResMII for this FU, as computed
using Equation 1, will be [VI. However, since la-
tencies 0 to 3 are forbidden, two initiations need to

54

(a) 0,1 Initiation. (* ops from 2nd Iteration)

Figure 2: Extended Reservation Tables from Figure l(a) with Multiple Iterations

4

(a) Reservation Table (b) State Diagram

Figure 3: An Example Reservation Table and its State Diagram

be separated by at least 4 cycles, as indicated by the
state diagram of the FU. Hence the actual ResMII for
this FU is [?I, roughly twice as large as the bound
given by Equation 1.

2.3 The need for Co-Scheduling

By analyzing the reservation table of the FU using
classical pipeline theory, one can obtain latency cycles
that maximize the throughput and utilization of the
pipeline. But the period’ of the latency cycle may or
may not match the initiation interval of the software
pipeline.2 As a consequence some of the legal latency
cycles predicted by the classical pipeline theory may
violate the modulo scheduling constraint for the given
11. We illustrate this with the help of another example.

Consider the reservation table and its state diagram
shown in Figures 3. Assume I1 = 8. In the state di-
agram the latency cycle (2 ,2,5) has the Minimum
Average Latency, M A L = = 3 . In Figure 4 we
show the result of initiating instructions at time step

‘The s u m of the latency values in the latency cycle is the

21t is important to distinguish between the period of the
hardware pipeline and the initiation interval of the software
pipelined schedule. Henceforth the terms “period” and “initi-
ation interval” are respectively used to refer to the periods of
hardware and software pipelines.

period of the latency cycle.

2, 4, and 9 (or 9 mod 8 = 1). It can be seen that col-
lisions occur at time steps 2, 5 and 4 in stages 1, 2
and 3 respectively. More specifically, a collision occurs
between two initiations at time 2 and 4, even though
the latency between these two initiations (f = 2)
is permissible according to the hardware pipeline the-
ory. This is not unexpected since the state diagram
is obtained for a reservation table with 7 columns and
was derived without a “wrap-round” resource usage in
mind. Further the classical pipeline theory [8, 61 does
indicate that 2 is an impermissible latency for any cy-
cle with period 8, since 2 is the complement of the for-
bidden latency 6 in the modulo space with I1 = 8.
However, the focus in these works [8, 61 is on how to
reconfigure the hardware pipelines for a given latency
cycle. Whereas here we are interested in finding an
optimal latency cycle for the given 11.

The self cycle in state iiiiOOi0, with a MAL of
4, is the permissible cycle for I1 = 8 with the max-
imum utilization. As this example shows, the state
diagram constructed using the classical pipeline the-
ory does not account for the software pipelining 11. As
a consequence the modulo scheduling constraint may
be violated by some latency cycles identified as legal
by the state diagram. In the following section we show
how to extend the classical pipeline theory to achieve
the simultaneous scheduling of hardware and software

55

Figure 4: Initiation of Instructions at (2, 4, 9) in the
Modulo Reservation Table

pipelines.

3 Modulo-Scheduled Pipelines

In this section we revisit classical pipeline theory
in the context of software pipelining. To differenti-
ate our approach from the classical pipeline theory, we
refer to our pipelines as Modulo-Scheduled (MS)
pipelines. In Section 3.2, we develop the theory be-
hind MS-pipelines which forms the basis for our co-
scheduling framework.

3.1 Preliminaries

The reservation table of a hardware pipeline is rep-
resented by an m, x 1, reservation table where m,
is the number of stages in the pipeline and I,. is the
execution time (latency) of an operation executing on
FU r . We use the symbol d,,, to denote the number of
cycles stage s in the pipeline is used. Define L G z (r)
as the maximum of d,,# over all stages in the pipeline.

In MS-pipelines, each instruction must be initiated
in the pipeline every I1 cycles. Therefore it is appro-
priate to use a reservation table with I1 (rather than
Z,.) columns. Notice that the relationship between Z,
and I1 could be (1) I1 > I , , (2) I , > 11, or (3) I, = 11.
If I1 > l,, the reservation table may be extended to
I1 columns (with the additional columns all empty).
If I1 < I,, the reservation table may be folded. Thus
for stage s an X mark at time step t in the original
reservation table appears at time step t mod I1 in the
folded reservation table. If I1 = I,, nothing need be
changed. We call the resulting reservation table the
cyclic reservation table (CRT).

With the folding required in case (2), multiple X
marks separated by I1 may be placed in the same col-
umn of the CRT. Fortunately, the modulo scheduling
constraint already prohibits such occurrences. Thus if
the reservation table satisfies the modulo scheduling
constraint, the cyclic reservation table will not have
two X marks in the same column of the CRT. However,

56

if this is not the case, it is possible to satisfy the mod-
ulo scheduling constraint by modifying the hardware
so as to delay all but one of the operations mapping
to the same time t.3 Since there are at most dmaz(r)
x marks in any row, and dmaz(r) 5 11, it is always
possible to delay an X mark to a column such that the
resulting CRT has at most one X mark in each column.
This forms the basis of Lemma 3.1.

Lemma 3.1 It is always possible t o sat is fy t h e modu lo
scheduling constraint by introducing appropriate delays
in t h e reservat ion table.

A formal proof of this as well as other lemmas is pre-
sented in [4].

Figure 5(a) shows the CRT of the reservation table
shown in Figure l(a), when I1 = 9. Next we define
several terms.

Definition 3.1 (Cyclic Forbidden Latency)
A latency f 5 11 i s said be a cyclic forbidden la-
tency i f there exis ts at least one row in t h e CRT where
t w o entr ies (X m a r k s) are separated by f co lumns
(considering t h e wrap-around of columns) . M o r e pre-
cisely, there exis ts a stage s s u c h tha t co lumns t and
(t + f) mod I1 both con ta in a n X m a r k .

It can be easily seen that in an MS-pipeline, a la-
tency value f greater than I1 is equivalent to f mod 11.
The set of all cyclic forbidden latencies is referred to
as the cyclic forbidden latency set.

Definition 3.2 (Cyclic Permissible Latency) A
latency f 5 I1 i s said t o be a cyclic permissible
latency i f f i s n o t in t h e cyclic f o rb idden la t ency set .

The cyclic forbidden latency set for the CRT in Fig-
ure 5(a) is (0,2,4,5,7}. The cyclic permissible laten-
cies are 1, 3, 6, and 8.

3.2 State Diagram for MS-Pipelines

Our interest in co-scheduling is to obtain latency
sequences that maximize the number of initiations in
I1 cycles. In order to derive this, we construct the
s ta te diagram for a CRT - henceforth referred to
as the Modulo-Scheduled State Diagram (MS-
state diagram) - in much the way as is done in
classical pipeline theory. The initial state in the MS-
state diagram represents an initiation at time step 0.
We want to find how many more initiations are possi-
ble in this pipeline, and at what latencies. We define
a cyclic collision vector to represent the state after a
particular initiation.

'As this must be done on a loop by loop basis, we hope
that hardware designers will consider making such a capability
available in the instruction set of future processors.

I 101011010 I
1,8\

8

(b) State Diagram for the CRT

Figure 5: A Cyclic Reservation Table and its State Diagram

Definition 3.3 (Cyclic Collision Vector)
A Cyclic Col l i s ion vec tor is a b inary vector of length
11, with t h e bits numbered f r o m 0 t o I1 - 1. Iff i s
forb idden in t h e current s ta te t h e n t h e f -th bit in t h e
cyclic collision vector is 1. Otherwise it is 0.

For the CRT in Figure 5(a), the initial cyclic col-
lision vector is 101011010. The construction of the
MS-state diagram proceeds as follows.

Procedure 1 Construction of State Diagram:

Step 1 Start with the initial cyclic collision vector.

Step 2 For each permissible latency p in the current
state, i.e. all bits p in the collision vector whose
value is 0, derive a subsequent state as follows.

(a) Rotate- lef t the collision vector by p bits.
(b) Logically OR the resulting vector with the ini-

tial cyclic collision vector. The resulting col-
lision vector is a subsequent state.

(c) Place an arc with value p from the previous
state to the new state.

Observe that there is a very close resemblance of
Procedure 1 to the state diagram construction in the
classical pipeline theory. The main difference is that in
Step 2(a) of Procedure 1 a r o t a t e - l e f t operation is
performed rather than a shif t-lef t operation. For
example, the cyclic collision vector ioiollolo when
rotated left by 3-bits gives 0110iOiOi. Notice that the
rightmost 3-bits in rotate left is 010 indicating that a
latency 8 is forbidden (apart from latencies 0, 2, 4, and
5) in the new state. More precisely, after two initia-
tions at time steps 0 and (0+3) , a latency of 8 at time
step 0 + 3 + 8 = 11 will cause a collision. Why? Be-
cause, another instance (from the following iteration)
of the instruction which was initiated at time step 0

will be initiated at time step 0 + I1 = 0 + 9. This
operation will have a latency 2 with the operation ini-
tiated at time step 11. Since 2 is in the cyclic forbidden
latency set, there will be a collision.

The MS-state diagram for the CRT in Figure 5(a)
is shown in Figure 5(b). Multiple arcs from state Si
to Sj are represented by means of a single arc with
multiple latency values, e.g. in Figure 5(b), the state
iiiillili can be reached from the initial state with
a latency value of either 1 or 8. An inspection of the
modulo scheduled state diagram (refer to Figure 5(b)
reveals that there are no directed cycles in the MS-
state diagram. This is formally established in [4].

Theorem 3.1 T h e collision vec tor of every s ta te S
in t h e M S - s t a t e diagram derived according t o Proce-
dure 1 represents all permissible (and forb idden) la-
tenc ies in that s ta te , taking i n t o account all in i t ia t ions
m a d e so f a r t o reach t h e state S.

A proof of this theorem is presented in [4].
A path in the MS-state diagram is a set of latency

values, one associated with each arc along a path,
from the initial state to the current state. For ex-
ample, there is a path with latency values {3,3} from
10~011010 to 1iiilllll in Figure 5(b). Since the ini-
tial state itself represents as initiation at time step 0,
the latency values {3,3} correspond to initiations at
time steps (0, (0 + 3), (0 + 3 + 3)) = {0,3,6}. The
length of a path is the number of states encountered on
the path. Further, the longest path corresponds to the
maximum number of initiations possible in a pipeline
within a software pipeline cycle. For the MS-state di-
agram shown in Figure 5(b), the maximum number of
initiations is 3 and the corresponding initiations are at
{ 0 , 3 , 6 h

57

Resewation Tables 7 4 CO-Scheduling the Hardware and
Software Pipelines

In this section we detail how our CO-scheduling ap-
proach generates schedules for FUs with structural haz-
ards. The next section provides an overview of Co-
Scheduling, while Sections 4.2 and 4.3 detail the two
major components of Co-Scheduling.

4.1 Overview of Co-Scheduling

Figure 6 outlines our approach. We begin by cal-
culating MI1 from Equation 2. As the example in
Section 2.2 showed, the MI1 from Equation 2 is some-
times too low. In the next Section, we detail how to
handle this situation. Once an appropriate I1 is found,
using the framework just outlined in Section 3, we at-
tempt to find (one of) the longest la tency sequence(s),
i.e. we try find at what times operations can be in-
troduced into the pipeline so as to keep it maximally
utilized.

Next , to perform software pipelining, we introduce
SCS, a slackness based co-scheduling algorithm based
on Huff's Slack Scheduling [5]. The key distinction
between SCS and Huff's approach is that instead of
placing operations at any permissible time, S CS places
them only at times given by the la tency sequence. If
S C S fails to find a schedule or fails to find one within
a reasonable period of time, I1 is incremented, and
the whole process is tried again. Once a schedule
is found, the corresponding pipeline delays must be
noted. That is, the prologue code to the loop must
contain instructions telling the hardware pipelines to
place delays (buffers) at the necessary locations.

4.2 Determining the Minimum I1

We use the following notation throughout this sec-
tion. Our aim is to construct a software pipelined
schedule for a loop L to run on an architecture with h
different types of FUs (e.g. Adder, Multiplier, etc.).
The usage of resources (pipeline stages) in FU type T is
specified by a single reservation table RT,, The exe-
cution time of an instruction that executes on FU type
T is same as the length of the reservation table I,. Fur-
ther, each FU type T has F, pipelines. The loop L has
N, instructions that are executed on the F, pipelines
of FU type r .

As mentioned in Section 2.1, the minimumI1, MII,
is max(ResMI1, RecMII) . The ResMII bound is
loose. Further for an initiation interval 11, the CRT
has length I1 and must satisfy the modulo scheduling

dG I AiM"
Modified Pipeline

Theory

(Procedure 2)

Sequence

SCS: Slackness
Based Co-Scheduling

1 ProlDgue lnsrmctions to I Insert Delavs in Pioeline

Figure 6: Outline of Slack Co-Scheduling Algorithm.

constraint. This may introduce delays* in the CRT
which, in turn, can increase the execution time of in-
structions. As a consequence RecMII may be af-
fected. Starting from the MI1 value obtained from
Equation 2 (in Section 2.1), we use the following iter-
ative procedure to determine the smallest 11.

Procedure 2 Find-Minimum11 (11)

Step 1 I1 = max(MII,max,.[d,,,(r)]}, where
L a Z (r) is the maximum number of X marks in
any row of RT, .

Step 2 Repeat Steps 2.1 to 2.6 until a valid I1 satis-
fying resource, recurrence and modulo scheduling
constraints is found

Step 2.1 For each FU type r do

Step 2.1.1 Construct CRT, from RT,. In-
troduce delays to satisfy modulo sched-
uling constraint if required.

Step 2.1.2 If the introduction of delays has
increased the execution time, then 1, is
set appropriately.

Step 2.2 RecMII is calculated with the new

Step 2.3 If the new RecMII > 11, increment I1

values of 1,.

by 1 and go back to Step 2.1.

4 T ~ o alternatives to satisfy the modulo scheduling con-
straints are to unroll the loop and to increase the I1 by 1. How-
ever, in this paper, we follow the approach used in the classical
pipeline theory, namely introducing delays in the pipeline.

58

Step 2.4 Else, derive the MS-state diagram for
the CRTs, CRTl to CRTh. Let Maz , repre-
sent the maximumnumber of initiations pos-
sible in FU type r and L, be a corresponding
latency sequence that achieves the maximum
initiations.

Step 2.5 If, for each FU type r , F, 2 go

Step 2.6 Else, increment I1 by 1 and go back to
to Step 3;

Step 2.1.

Step 3 End.

It can be observed that when Procedure 2 termi-
nates, the I1 value satisfies, dependency, resource and
modulo scheduling constraints. Further, it can be es-
tablished that the I1 obtained from Procedure 2 is
the minimum I1 [4].

4.3 SCS Algorithm

In our CO-scheduling framework, resource usage of
different pipeline stages, and the initiation of opera-
tions in pipeline are maintained using the CRT and
a ModuZo Initiation Table (MIT). More precisely, the
CRT is used to keep track of the resource (pipeline
stage) usage and avoid resource conflicts. Notice that
our CRT, constructed as discussed in the previous sec-
tion, does satisfy the modulo scheduling constraint,
even in the presence of structural hazards. The mod-
ulo initiation table indicates only when operations are
introduced in the pipeline. Compared to the MIT,
the Modulo Reservation Table (MRT), used in other
software pipelining methods [7, 5, 9, 111, represents
both the initiation time of instructions and their re-
source usage. Due to this dual role, MRT consists of
a larger number of columns, one for each stage of the
pipelines in the architecture. This increases the com-
plexity of software pipelining. In contrast, the MIT
only stores when operations are initiated in the pipe.
Hence, it consists of fewer columns, equal to the num-
ber of pipelines in the architecture.

After computing an I1 and a corresponding optimal
latency sequence - optimal in terms of the through-
put of a hardware pipeline structure - as detailed in
Procedure 2, SCS, our slackness based co-scheduling
algorithm is used to find a schedule fitting I1 and the
Zatency sequence. The basic notion of Huff’s original
Slack Scheduling [5] was to schedule nodes in increas-
ing order of their slackness: the difference between the
earliest time at which a node may be scheduled and
the latest. Slack is a dynamic measure and is updated
after each node is scheduled. These points remain in
scs.

The difference lies in how a time is chosen within
the slack range. The original Slack Scheduling permit-
ted nodes to be placed anywhere in their slack range.
SCS, on the other hand, allows nodes to be placed
only at points given in the latency sequence, even if
this means avoiding some times that would yield a le-
gal partial schedule. In this way, SCS takes a more
global view of when instructions should be scheduled
and avoids getting trapped at greedy local maxima,
the way the original can.5

To clarify matters, we illustrate SCS through an
example. Assume: (a) I1 = 5, (b) one type of func-
tion unit, (c) one copy of it, (a) latency Sequence from
Procedure 2: 0, 3, (e) one operation already placed
at time 1 (mod 11), and (f) new operation must be
placed at time 3 or 4 to obey data dependence con-
straints.

Since the first operation has already been placed at
time 1, the new operation can be placed only at times
matching the latency sequence. Since time i+O=i has
already been used, the only other legal value is 1+3=4.
Thus time 4 is chosen, even though time 3 may also
have produced a legal partial schedule.

We chose to use Slack Co-Scheduling because of
the good performance achieved by the original Slack
Scheduling [5]. However, modified versions of other
modulo scheduling techniques [7, 3, 12, 111 using a
fixed I1 could have been used instead. The main
novelty of our approach lies in Procedure 2. The
fact that it can work with variants of many other ap-
proaches indicates its versatility.

Recall that SCS, at least the current implemen-
tation, works with only one latency sequence. This
may affect: (a) The existence of a resource-constrained
schedule for a given 11. This is true, even if the choice
is made only among latency sequences that result in
maximum initiations. (b) The quality of the schedule
in terms of the number of registers used by the sched-
ule. It is possible, in principle, to extend our SCS
algorithm to use multiple latency sequences. We plan
to investigate this in future.

5 Experimental Results

To evaluate CO-scheduling we implemented it and
tested it on 1008 loops taken from a variety of bench-
marks: specfp92, specint92, livermore, linpack,
and the NAS kernels. All of these loops contain fewer
than 64 operations, with a median of 7 and a mean
of 12. For the experiments, we considered an architec-
~-
Eh fairness, we note that the original was applied only to

function units with clean pipelines and function units (divide)
with no pipelining.

59

ture with 2 Integer Units, one each of the remaining
units: Load, Store, FP Add/Subtract, FP Mul-
tiply and FP Divide. To exercise our co-scheduling
method fully, we chose long reservation tables (repre-
senting deeper pipelines) with arbitrary structural haz-
ards. In particular the FP add and multiply units have
a depth of 5 and 7 pipeline stages respectively, while
the divide unit has a depth of 22 stages. The reser-
vation tables are chosen in such a way that their exe-
cution latency of operations match with those of some
state-of-the-art microprocessor architecture. Further
they re-emphasize the point that the Co-Scheduling
framework is especially for deeper pipelines of future
architectures.

For pragmatic reasons, we restricted our implemen-
tation to take a maximum of 3 minutes to construct
the schedule for each loop. We also limited the size
of the MS-state diagram generated to 2000 collision
vectors. While the latter restriction had no effect on
the constructed schedule, the former allowed only 95%
(or 958) of the test loops to be scheduled under the
given resource constraints. The schedule for the re-
maining 5% of the loops could be obtained either with
a longer compilation time or starting with a higher
MII. Table 1 details how well the I1 compares to the
lower bound MII. As can be seen, in 41% of loops, we
achieve I1 = MIL Further, for 72% of the test loops,
the I1 achieved was within 4 cycles from the lower
bound, MII. This turns out to be within 1.25 * MII.
Our CO-Scheduling method, and all software pipelining
methods in general, tend to take longer to construct a
schedule when the function units are deeply pipelined
and involve arbitrary structural hazard. To the best
of our knowledge, this is one of the first extensive ex-
perimental results for architectures involving deeper
pipelines with arbitrary hazards6. In the future, we
plan to compare our co-scheduling method with other
software pipelining methods [5, 111.

Additional statistics characterizing the loops and
resulting schedules are given in Table 2. The median
time to schedule a loop was 0.25 seconds and the (geo-
metric) mean was 0.50 seconds on a Sparc 20. The
median I1 was 12 and the geometric mean I1 was 14.3.
89.9% of the loops required no more than 32 registers.
Thus in a large number of cases, the schedule produced
by CO-scheduling does not require any further (regis-
ter) spill code.

From our experiments, we observed that the intro-

3
4

Similar experiments were conducted for shallow pipelines
involving fewer structural haeards. In those experiments the
performance of the co-scheduling framework is even better, re-
quiring a (arithmetic) mean execution time of only 1.25 seconds
and obtaining schedules for all but 2% of test loops in less than
1 minute. These results are reported in [4].

50 5.0
113 11.3

60

I1 - MI1 # of Cases %-age ~i
No Schedule
in 3 minutes

Table 1: Difference between I1 achieved and MII.

Table 2: Comparison of I1 achieved to MII.

duction of delays in Procedure 2) does not increase
11. This is partly due to our assumption of no inter-
stage dependences. However, the insertion of delays
does improve I1 for a small number, 17, of the test
loops. The percentage improvement in I1 of our sched-
ules against a scheduling method which does not in-
sert delays (to satisfy modulo scheduling constraint)
is roughly 3%. Further, our experiments revealed that
the bound (from Equation 2) is quite tight, which is
a surprise. Similar results were observed for architec-
tures involving either shallow or deep pipelines. Hence
one may conclude that these observations are some-
what independent of the structure of the pipelines.
Further investigation of these effects may be required
to derive strong conclusions.

6 Related Work

Resource-constrained software pipelining has been
studied extensively by several researchers and a num-
ber of modulo scheduling algoTithms [2, 3, 5, 7, 10, 11,
121 have been proposed in the literature. A compre-
hensive survey of these works is provided by Rau and
Fisher in [9]. As mentioned in Section 4.3, the Co-
Scheduling method discussed in this paper uses a vari-
ation of Huff’s Slack Scheduling method [5].

The work presented in this paper is unique in the
sense that it coordinates the scheduling of both hard-
ware structures and software pipelined schedules in
a single Co-Scheduling framework to achieve high in-
struction level parallelism. To the best of our knowl-
edge, there is no explicit use of the well-developed
classical pipeline theory (or its adaptation) in software
pipelining methods. In contrast our Co-Scheduling ap-
proach does so. The CO-Scheduling framework com-
plements other related work in resource-constrained
software pipelining by considering a special class, viz.
a d h m e t i c pipelines. It is very effective for handling
deep arithmetic pipelines.

There is another major difference between our Co-
Scheduling and other approaches. In Co-Scheduling,
the software pipeline initiations are represented in a
Modulo Initiation Table while resource conflicts of
hardware pipeline structures are handled in the Cyclic
Reservation Table. In contrast other modulo schedul-
ing algorithms use a single Modulo Reservation Table
to represent both resource conflicts and initiation time.
Separating them, as in our method, facilitates achiev-
ing better and faster schedules. An attractive feature
of the CO-Scheduling framework is that it opens up
new avenues by facilitating the use of classical delay
insertion technique to improve instruction level paral-
lelism.

Modulo-Scheduled pipelines discussed in this paper
are different from pipelines scheduled at (fixed) latency
cycles [8, 6, 11. The period of the latter depends only
on the resource usage of the pipeline, while in the for-
mer, it is governed both the resource usage and the
recurrences in the loop considered for scheduling.

7 Conclusions

In this paper we have proposed Co-Scheduling,
a unified framework that performs the scheduling
of hardware and software pipelines. The proposed
method uses and extends classical pipeline theory to
obtain better software pipelined schedules, as has been
demonstrated through both examples and experimen-
tal results. As part of CO-Scheduling, we have intro-
duced the Modulo Initiation Table (MIT) and Cyclic
Reservation Table (CRT) as alternatives to the stan-
dard modulo reservation table.

We have implemented CO-scheduling and run exper-
iments on a set of 1008 loops taken from various bench-
mark suites. We have experimented our CO-Scheduling
method specifically for architectures involving deeper
pipelines and arbitrary structural hazards. The me-
dian time for Go-Scheduling to handle one loop was
0.25 seconds.

References

[I] J.K. Chaar and E.S. Davidson. Cyclic job shop sched-
uling using collision vectors. CSE-TR-169-93, Univ.
of Michigan, Ann Arbor, MI., Aug. 1993

[2] J. C. Dehnert and R. A. Towle. Compiling for Cydra
5. J . of Supercomputing, 7:181-227, May 1993.

[3] F. Gasperoni and U. Schwiegelshohn. Efficient algo-
rithms for cyclic scheduling. Res. Rep. RC 17068,
IBM T. J. Watson Res. Center, Yorktown Heights,
NY, 1991.

[4] R. Govindarajan, E. R. Altman, and G. R.
Gao. Co-scheduling hardware and software pipelines.
ACAPS Tech. Memo 92, Sch. of Comp. Sci.,
McGill U., MontrCal, QuC., Jan. 1995. In ftp://ftp-
acaps.cs.mcgill.ca/pub/doc/memos.

[5] R. A. Huff. Lifetime-sensitive modulo scheduling. In
Proc. of the ACM SIGPLAN '93 Conf. on Program-
ming Language Design and Implementation, pages
258-267, Albuquerque, NM, Jun. 23-25, 1993.

[6] P. M. Kogge. The Architecture of Pipelined Comput-
ers. McGraw-Hill Book Company, New York, NY,
1981.

[7] M. Lam. Software pipelining: An effective scheduling
technique for VLIW machines. In PTOC. of the SIG-
PLAN '88 Conf. on Programming Language Design
and Implementation, pages 318-328, Atlanta, GA,
Jun. 22-24, 1988.

[8] J.H. Pate1 and E.S. Davidson. Improving the through-
put of a pipeline by insertion of delays. In Proc. of
the 3rd Ann. Symp. on Computer Architecture, pages
159-164, Clearwater, FL, Jan. 19-21, 1976.

[9] B. R. Rau and J. A. Fisher. Instruction-level parallel
processing: History, overview and perspective. J . of
Supercomputing, 7:9-50, May 1993.

[lo] B. R. Rau and C. D. Glaeser. Some scheduling
techniques and an easily schedulable horizontal ar-
chitecture for high performance scientific computing.
In Proc. of the 14th Ann. Microprogramming Work.,
pages 183-198, Chatham, MA, Oct. 12-15, 1981.

[ll] B. R. Rau. Iterative modulo scheduling: An algorithm
for software pipelining loops. In Proc. of the 27th
Ann. Intl. Symp. on Microarchitecture, pages 63-74,
San Jose, CA, Nov. 30-Dec.2, 1994.

[12] J . Wang and E. Eisenbeis. A new approach to software
pipelining of complicated loops with branches. Res.
rep. no., Institut Nat. de Recherche en Informatique
et en Automatique (INRIA), Rocquencourt, France,
Jan. 1993.

61

ftp://ftp

