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Abstract 

In t h i s  paper w e  propose CO-Scheduling, a f r a m e w o r k  
f o r  s imul taneous  design of hardware pipelines struc- 
t u r e s  and software-pipelined schedules. T w o  i m p o r t a n t  
components  of t h e  Co-Scheduling f r a m e w o r k  are: 
(1) An extens ion  t o  t h e  analysis of hardware pipeline 
design t h a t  m e e t s  t h e  needs of periodic (or  software 
pipelined) schedules. R e s e r v a t i o n  tables, forb idden  la- 
tenc ies ,  collision vectors,  and s ta te  diagrams f r o m  
classical pipeline theory  are revisited and extended t o  
solve t h e  n e w  problems. 
(2) An efficient m e t h o d ,  based o n  t h e  above ex tens ion  
of pipeline analysis,  t o  p e r f o r m  ( a )  software pipeline 
scheduling and (b) hardware pipeline reconfiguration 
w h i c h  are m u t u a l l y  “compatible ”. 

T h e  proposed method has  been i m p l e m e n t e d  and pre- 
l i m i n a r y  exper imenta l  results f o r  1008 kerne l  loops are 
reported. Co-scheduling successfully obtains a sched- 
ule f o r  95% of t h e s e  loops. T h e  m e d i a n  t i m e  t o  obtain 
t h e s e  schedules i s  0.25 seconds o n  a Sparc-20. 

Keywords: 
classical Pipeline Theory, Go-Scheduling, Pipeline Ar- 
chitecture, Software Pipelining, VLIW Architectures. 

1 Introduction 

Pipelining is one of the most efficient means of im- 
proving performance in high-end processor architec- 
tures. In order to achieve higher throughput and 
greater instruction-level parallelism, modern micro- 
processors contain deeply pipelined function units with 
arbitrary s t ruc tura l  hazards. Historically, design tech- 
niques for hardware pipelines with structural hazards 
have been successfully developed and used in vector 
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and pipelined supercomputers. Classical hardware 
pipeline design theory developed more than 2 decades 
ago was driven by this need [a, 61. 

In the past decade, technology advances have made 
it feasible to design very aggressive arithmetic and in- 
struction pipelines in commodity microprocessor ar- 
chitectures, e.g. superpipelined architectures and su- 
perscalar architectures. In the meantime, a compil- 
ing technique known as software pipelining has be- 
come increasingly popular for aggressive loop sched- 
uling for these architectures. A software pipelined 
schedule overlaps operations from different loop itera- 
tions in an attempt to fully exploit instruction level 
parallelism. A variety of software pipelining algo- 
rithms [lo, 7, 3, 5, 12, 21 have been proposed which 
operate under resource constraints. An excellent sur- 
vey of these algorithms can be found in 191. 

In this paper, we propose a design methodology 
which integrates the scheduling of hardware and soft- 
ware pipelines in a unified framework - termed Co- 
Scheduling. The basic observations that lead to the 
Go-Scheduling framework are: 
Observation 1: Classical hardware pipeline schedul- 
ing theory cannot be directly applied in the presence 
of software pipelining. The critical missing link is that 
hardware and software pipeline cycles may have dif- 
ferent periods. (Motivating examples for this are pro- 
vided in Section 2.) 
Observation 2: Luckily, hardware pipeline schedul- 
ing theory may be extended to consider the constraints 
of software pipelined schedules. These extensions pro- 
vide key insights and heuristics for improving software 
pipelining. In particular, by analyzing the reservation 
table of a hardware (arithmetic) pipeline, we can de- 
rive Ugood” initiation sequences that better utilize the 
pipeline. Use of such initiation sequences narrows the 
search space of software pipelined schedules, which in 
turn, reduces the time to construct a schedule. Fur- 
ther, use of “good” initiation sequences may improve 
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the initiation interval (11) in resource-limited loops. 
We give a number of motivating examples in Section 2. 

Based on these observations, the Co-Scheduling 
framework contains two components: 
(1) We advance the classical pipeline design analysis 
by first extending reservation tables to cyclic reserva- 
t i o n  tables (CRT). This allows information on the soft- 
ware pipeline initiation interval I1 to be embedded in 
the hardware pipeline structures. Important concepts 
such as f o rb idden  latencies ,  collision vectors ,  and state  
diagrams from classical pipeline analysis are revisited 
and extended for CRTs. This theory facilitates identi- 
cation of good initiation sequences that maximize the 
utilization of pipeline stages. 
(2) On the software (compiler) side, we use a Modulo 
In i t i a t ion  Table (MIT) which represents only the ini- 
tiation pattern of a software pipelined schedule: the 
resource usage and the structural constraints imposed 
by the reservation table are captured succinctly by 
the CRT. Based on the MIT, we present an efficient 
method for both constructing the software pipeline 
schedule S and “adjusting” the configuration of hard- 
ware pipeline delays to “match” the initiation interval 
(11). This makes the task of scheduling for architec- 
tures involving deep pipelines easier. 

To demonstrate the feasibility of the co-scheduling 
approach and its usefulness in software pipelining, we 
have implemented the proposed method. The major 
observations are: 

By making use of the good initiation sequences 
discovered by CO-Scheduling, a schedule was 
found for 95% of the loops within a small exe- 
cution time. The median of the execution time 
was 0.25 seconds. These results are encouraging 
considering the fact that our experiments used 
long reservation tables (corresponding to deep 
pipelines) with arbitrary structural hazards. 

The CO-Scheduling approach allowed greater 
pipeline utilization and increased number of initi- 
ations per unit time, thus, possibly reducing 11. 

Our delay insertion approach was a success, allow- 
ing a smaller I1 than would otherwise be possible. 

The CO-Scheduling framework holds great promise 
for future microprocessor design where aggressive 
pipelining will be used to accomplish very high proces- 
sor throughput. Microprocessor vendors are already in 
the process of designing deeply pipelined ALUs with 
more than 10 stages. As these high-speed pipelined 
stages are reused for various functions, arbitrary struc- 
tural hazards are introduced. This, in turn, requires 

complex instruction scheduling to exploit the avail- 
able instruction-level parallelism. The CO-Scheduling 
framework proposed in this paper is especially use- 
ful for scheduling the new generation deeply pipelined 
function units. 

In the following section we motivate the need for 
the CO-Scheduling framework with a number of exam- 
ples. In Section 3, the classical pipeline theory is revis- 
ited in the context of software pipelining. We present 
the CO-Scheduling framework in Section 4. Implemen- 
tation of Co-Scheduling and some preliminary results 
are discussed in Section 5 .  Section 6 compares our ap- 
proach to other related work. Concluding remarks are 
presented in Section 7. 

2 Background and Motivation 

In this section we motivate the need for co- 
scheduling. We make two assumptions in this paper: 
first, only single- funct ion or s ta t ic  pipelines [6] are 
considered; second, as in [8], it is assumed that the 
stages of a pipeline are independent. 

2.1 Background 

In software pipelining, we focus on periodic l inear 
schedules under which an instruction i in iteration j 
is initiated at  time j * I1 + ti, where I1 is the ini- 
t ia t ion  interval  or period of the schedule and ti is a 
constant. Like most software pipelining methods, we 
assume f i zed  mapp ing  where an instruction i (from all 
iterations) will always be executed on the same func- 
tion unit (FU) during the course of the loop execution. 

The minimum initiation interval (MII) is con- 
strained by both loop-carried dependences (or recur- 
rences) and available resources [lo, 7, 5, 9, 21. Loop- 
carried dependences put a lower bound, RecMII, on 
MI1 [lo, 71. Another lower bound ResMII on MI1 is 
enforced by resource constraints. Suppose an instruc- 
tion uses a pipeline stage s of a function unit (FU) type 
r (e.g. ADDER), for cl,.,, cycles. If there are N,. in- 
structions that execute on FU type r and there are F, 
FUs, then clearly any schedule will have I1 greater than 
[ N, *d,.,,/F,]. Thus ResMII is the maximumof this 
bound taken over all stages and FU types: 

And, 
MI1 = max (RecMII, ResMII). (2) 

Clearly, any initiation interval I1 for which a 
resource-constrained schedule exists is greater than or 
equal to MII. i.e. I1 2. MIL 
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Consider the reservation table shown in Figure l(a). 
The execution time of an instruction in this FU is 6 
cycles. Suppose we are interested in constructing a 
schedule with I1 = 9. To do this we extend the reser- 
vation table as shown in Figure 2(a). Notice from Fig- 
ure 2(a) that initiation of instructions a t  time 0 and 
1 is permissible [6 ] .  The resource usage of these two 
initiations are represented, respectively, by 0 and 1 
in the table. As the Table indicates, once two oper- 

Figure 1: Example Reservation Tables 

Next we briefly review existing software pipelining 
methods that are capable of handling structural haz- 
ards [2, 7, 51. In general, these methods construct 
a Modulo Reservation Table (MRT) to keep track 
of the resources used by already scheduled instruc- 
tions. The MRT contains I1 rows and one column for 
each resource. If an FU contains structural hazards, 
each pipeline stage must be considered as a different 
resource in the MRT. Given the MRT, the existing 
scheduling algorithms, henceforth referred to as Gen- 
eral Scheduling Algorithms (GSA), proceed by 
scheduling operations based purely on the availabil- 
ity of resources. Which operations get scheduled first 
is decided by a priority function which differs across 
various software pipelining algorithms. If an oper- 
ation cannot be scheduled, the algorithm selectively 
unschedules a number of operations and re-schedules 
them again. 

In hardware pipelines, the resource usage of various 
pipeline stages are represented by a two dimensional 
Reservat ion  Table [6 ] .  If two operations entering a 
pipeline f cycles apart would subsequently require one 
(or more) of the pipeline stages at  the same time, f is 
termed a forbidden latency. Operations separated 
by permissible latencies have no such conflicts. 

A collision vector has length equal to the pipeline 
latency and contains a 1 a t  all forbidden latencies, and 
a 0 a t  all permissible latencies. A state diagram rep- 
resents the listing of all initiation sequences that are 
permissible. Refer to [6] for the construction of state 
diagrams. Analysis of the state diagram reveals what 
initiation sequence(s) or latency sequences maxi- 
mize the utilization and throughput of the pipeline. 
Further details can be found in [6 ] .  

2.2 Need for Analysis of Pipeline Struc- 
ture 

To the best of our knowledge, none of the existing 
software pipelining approaches [2, 7, 51 make any ex- 
plicit use of the analysis developed in classical pipeline 
theory. With the help of a few examples, we demon- 
strate that rectifying this omission can greatly improve 
the schedule produced. 

ations are started in the pipeline (at time 0 and l), 
no further operations can be started until the next 
iteration begins at  time 9. Notice that starting an op- 
eration at  time step 6 will require the use of Stage 
1 at time IU (i.e. 6 cycles after the third x in the 
Table 2(a)). However, this will interfere with an oper- 
ation (1*) from the second iteration, and hence is im- 
permissible. More generally, this requirement - that 
no resource be used by a single iteration at  times that 
are congruent modulo I1 - is known as the modulo 
scheduling constraint [lo, 91.) 

Analysis of the reservation table reveals that initia- 
tions at  time steps U, 3, 6 are permissible and better 
utilize the pipeline-handling 3 operations every 9 cy- 
cles as depicted in Figure 2(b). Compared to the (0 , l )  
initiation which gives a throughput of 2/9, the (0 ,3 ,6)  
initiation improves the throughput by 3/9 = 1/3. The 
General Scheduling Algorithm (GSA) outlined above 
uses any permissible latency sequence, not necessar- 
ily an optimal one, in terms of the throughput of the 
pipeline. If the FU in this example is a critical resource 
and if a non-optimal greedy initiation, like (0, l), was 
chosen, then the GSA may have to make a large num- 
ber of retries or may even fail to produce a valid sched- 
ule even though one exists at  the given 11. Thus know- 
ing and using the optimal latency sequences in the 
software pipelining method facilitate producing bet- 
ter schedules and producing them faster (i.e. in less 
compile time). 

The GSA models individual stages in an FU as 
separate resources in the Modulo R e s e r v a t i o n  Tables 
(MRT). As a consequence, for a modern VLIW with 
less than 10 FUs, the number of columns in the MRT 
can be very high, increasing the complexity of sched- 
uling. On the other hand, our use of pipeline theory 
avoids initiations that result in a resource conflict, fa- 
cilitating the pipelined function unit to be modeled as 
a single resource. 

Lastly, the ResMII obtained from Equation 1 is 
only a loose bound. For example, in the reservation 
table of Figure l(b), the maximum usage of any stage 
is only 2. Thus the ResMII for this FU, as computed 
using Equation 1, will be [VI. However, since la- 
tencies 0 to 3 are forbidden, two initiations need to 
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(a) 0,1 Initiation. (* ops from 2nd Iteration) 

Figure 2: Extended Reservation Tables from Figure l(a) with Multiple Iterations 

4 

(a) Reservation Table (b) State Diagram 

Figure 3: An Example Reservation Table and its State Diagram 

be separated by at  least 4 cycles, as indicated by the 
state diagram of the FU. Hence the actual ResMII for 
this FU is [?I, roughly twice as large as the bound 
given by Equation 1. 

2.3 The need for Co-Scheduling 

By analyzing the reservation table of the FU using 
classical pipeline theory, one can obtain latency cycles 
that maximize the throughput and utilization of the 
pipeline. But the period’ of the latency cycle may or 
may not match the initiation interval of the software 
pipeline.2 As a consequence some of the legal latency 
cycles predicted by the classical pipeline theory may 
violate the modulo scheduling constraint for the given 
11. We illustrate this with the help of another example. 

Consider the reservation table and its state diagram 
shown in Figures 3. Assume I1 = 8. In the state di- 
agram the latency cycle (2 ,2,5)  has the Minimum 
Average Latency, M A L  = = 3 .  In Figure 4 we 
show the result of initiating instructions at  time step 

‘The s u m  of the latency values in the latency cycle is the 

21t is important to distinguish between the period of the 
hardware pipeline and the initiation interval of the software 
pipelined schedule. Henceforth the terms “period” and “initi- 
ation interval” are respectively used to refer to the periods of 
hardware and software pipelines. 

period of the latency cycle. 

2, 4, and 9 (or 9 mod 8 = 1). It can be seen that col- 
lisions occur at  time steps 2, 5 and 4 in stages 1, 2 
and 3 respectively. More specifically, a collision occurs 
between two initiations at  time 2 and 4, even though 
the latency between these two initiations ( f = 2) 
is permissible according to the hardware pipeline the- 
ory. This is not unexpected since the state diagram 
is obtained for a reservation table with 7 columns and 
was derived without a “wrap-round” resource usage in 
mind. Further the classical pipeline theory [8, 61 does 
indicate that 2 is an impermissible latency for any cy- 
cle with period 8, since 2 is the complement of the for- 
bidden latency 6 in the modulo space with I1 = 8. 
However, the focus in these works [8, 61 is on how to 
reconfigure the hardware pipelines for a given latency 
cycle. Whereas here we are interested in finding an 
optimal latency cycle for the given 11. 

The self cycle in state iiiiOOi0, with a MAL of 
4, is the permissible cycle for I1 = 8 with the max- 
imum utilization. As this example shows, the state 
diagram constructed using the classical pipeline the- 
ory does not account for the software pipelining 11. As 
a consequence the modulo scheduling constraint may 
be violated by some latency cycles identified as legal 
by the state diagram. In the following section we show 
how to extend the classical pipeline theory to achieve 
the simultaneous scheduling of hardware and software 
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Figure 4: Initiation of Instructions at  (2, 4, 9) in the 
Modulo Reservation Table 

pipelines. 

3 Modulo-Scheduled Pipelines 

In this section we revisit classical pipeline theory 
in the context of software pipelining. To differenti- 
ate our approach from the classical pipeline theory, we 
refer to our pipelines as Modulo-Scheduled (MS) 
pipelines. In Section 3.2, we develop the theory be- 
hind MS-pipelines which forms the basis for our co- 
scheduling framework. 

3.1 Preliminaries 

The reservation table of a hardware pipeline is rep- 
resented by an m, x 1, reservation table where m, 
is the number of stages in the pipeline and I,. is the 
execution time (latency) of an operation executing on 
FU r .  We use the symbol d,,, to denote the number of 
cycles stage s in the pipeline is used. Define L G z ( r )  
as the maximum of d,,# over all stages in the pipeline. 

In MS-pipelines, each instruction must be initiated 
in the pipeline every I1 cycles. Therefore it is appro- 
priate to use a reservation table with I1 (rather than 
Z,.) columns. Notice that the relationship between Z, 
and I1 could be (1) I1 > I ,  , (2) I ,  > 11, or (3) I, = 11. 
If I1 > l,, the reservation table may be extended to 
I1 columns (with the additional columns all empty). 
If I1 < I,, the reservation table may be folded. Thus 
for stage s an X mark at  time step t in the original 
reservation table appears at  time step t mod I1 in the 
folded reservation table. If I1 = I,, nothing need be 
changed. We call the resulting reservation table the 
cyclic reservation table (CRT). 

With the folding required in case (2), multiple X 
marks separated by I1 may be placed in the same col- 
umn of the CRT. Fortunately, the modulo scheduling 
constraint already prohibits such occurrences. Thus if 
the reservation table satisfies the modulo scheduling 
constraint, the cyclic reservation table will not have 
two X marks in the same column of the CRT. However, 
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if this is not the case, it is possible to satisfy the mod- 
ulo scheduling constraint by modifying the hardware 
so as to delay all but one of the operations mapping 
to the same time t.3 Since there are at  most dmaz(r) 
x marks in any row, and dmaz(r) 5 11, it is always 
possible to delay an X mark to a column such that the 
resulting CRT has at  most one X mark in each column. 
This forms the basis of Lemma 3.1. 

Lemma 3.1 It is always possible t o  sat is fy  t h e  modu lo  
scheduling constraint  by introducing appropriate delays 
in t h e  reservat ion table. 

A formal proof of this as well as other lemmas is pre- 
sented in [4]. 

Figure 5(a) shows the CRT of the reservation table 
shown in Figure l(a), when I1 = 9. Next we define 
several terms. 

Definition 3.1 (Cyclic Forbidden Latency) 
A latency f 5 11 i s  said be a cyclic forbidden la- 
tency i f  there exis ts  at least one  row in t h e  CRT where 
t w o  entr ies  (X m a r k s )  are separated by f co lumns  
(considering t h e  wrap-around of columns) .  M o r e  pre-  
cisely, there exis ts  a stage s s u c h  tha t  co lumns  t and 
(t + f) mod I1 both con ta in  a n  X m a r k .  

It can be easily seen that in an MS-pipeline, a la- 
tency value f greater than I1 is equivalent to f mod 11. 
The set of all cyclic forbidden latencies is referred to 
as the cyclic forbidden latency set. 

Definition 3.2 (Cyclic Permissible Latency) A 
latency f 5 I1 i s  said t o  be a cyclic permissible 
latency i f f  i s  n o t  in t h e  cyclic f o rb idden  la t ency  set .  

The cyclic forbidden latency set for the CRT in Fig- 
ure 5(a) is (0,2,4,5,7}. The cyclic permissible laten- 
cies are 1, 3, 6, and 8. 

3.2 State Diagram for MS-Pipelines 

Our interest in co-scheduling is to obtain latency 
sequences that maximize the number of initiations in 
I1 cycles. In order to derive this, we construct the 
s ta te  diagram for a CRT - henceforth referred to 
as the Modulo-Scheduled State Diagram (MS- 
state diagram) - in much the way as is done in 
classical pipeline theory. The initial state in the MS- 
state diagram represents an initiation at  time step 0. 
We want to find how many more initiations are possi- 
ble in this pipeline, and at what latencies. We define 
a cyclic collision vector  to represent the state after a 
particular initiation. 

'As this must be done on a loop by loop basis, we hope 
that hardware designers will consider making such a capability 
available in the instruction set of future processors. 
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(b) State Diagram for the CRT 

Figure 5:  A Cyclic Reservation Table and its State Diagram 

Definition 3.3 (Cyclic Collision Vector) 
A Cyclic Col l i s ion  vec tor  is a b inary  vector of length 
11, with t h e  bits numbered f r o m  0 t o  I1 - 1. Iff i s  
forb idden  in t h e  current  s ta te  t h e n  t h e  f -th bit in t h e  
cyclic collision vector is 1. Otherwise  it is 0. 

For the CRT in Figure 5(a), the initial cyclic col- 
lision vector is 101011010. The construction of the 
MS-state diagram proceeds as follows. 

Procedure 1 Construction of State Diagram: 

Step 1 Start with the initial cyclic collision vector. 

Step 2 For each permissible latency p in the current 
state, i.e. all bits p in the collision vector whose 
value is 0, derive a subsequent state as follows. 

(a) Rotate- lef t  the collision vector by p bits. 
(b) Logically OR the resulting vector with the ini- 

tial cyclic collision vector. The resulting col- 
lision vector is a subsequent state. 

(c) Place an arc with value p from the previous 
state to the new state. 

Observe that there is a very close resemblance of 
Procedure 1 to the state diagram construction in the 
classical pipeline theory. The main difference is that in 
Step 2(a) of Procedure 1 a r o t a t e - l e f t  operation is 
performed rather than a shif t-lef t operation. For 
example, the cyclic collision vector ioiollolo when 
rotated left by 3-bits gives 0110iOiOi. Notice that the 
rightmost 3-bits in rotate left is 010 indicating that a 
latency 8 is forbidden (apart from latencies 0, 2, 4, and 
5) in the new state. More precisely, after two initia- 
tions at time steps 0 and (0+3) ,  a latency of 8 at  time 
step 0 + 3 + 8 = 11 will cause a collision. Why? Be- 
cause, another instance (from the following iteration) 
of the instruction which was initiated at  time step 0 

will be initiated at  time step 0 + I1 = 0 + 9. This 
operation will have a latency 2 with the operation ini- 
tiated at time step 11. Since 2 is in the cyclic forbidden 
latency set, there will be a collision. 

The MS-state diagram for the CRT in Figure 5(a) 
is shown in Figure 5(b). Multiple arcs from state Si 
to Sj are represented by means of a single arc with 
multiple latency values, e.g. in Figure 5(b), the state 
iiiillili can be reached from the initial state with 
a latency value of either 1 or 8. An inspection of the 
modulo scheduled state diagram (refer to Figure 5(b) 
reveals that there are no directed cycles in the MS- 
state diagram. This is formally established in [4]. 

Theorem 3.1 T h e  collision vec tor  of every  s ta te  S 
in t h e  M S - s t a t e  diagram derived according t o  Proce- 
dure 1 represents all permissible (and  forb idden)  la- 
tenc ies  in that  s ta te ,  taking i n t o  account all in i t ia t ions  
m a d e  so f a r  t o  reach t h e  state S. 

A proof of this theorem is presented in [4]. 
A path in the MS-state diagram is a set of latency 

values, one associated with each arc along a path, 
from the initial state to the current state. For ex- 
ample, there is a path with latency values {3,3} from 
10~011010 to 1iiilllll in Figure 5(b). Since the ini- 
tial state itself represents as initiation at time step 0, 
the latency values {3,3} correspond to initiations at  
time steps (0, (0 + 3), (0 + 3 + 3)) = {0,3,6}. The 
length of a path is the number of states encountered on 
the path. Further, the longest path corresponds to the 
maximum number of initiations possible in a pipeline 
within a software pipeline cycle. For the MS-state di- 
agram shown in Figure 5(b), the maximum number of 
initiations is 3 and the corresponding initiations are at  
{ 0 , 3 , 6 h  
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Resewation Tables 7 4 CO-Scheduling the Hardware and 
Software Pipelines 

In this section we detail how our CO-scheduling ap- 
proach generates schedules for FUs with structural haz- 
ards. The next section provides an overview of Co- 
Scheduling, while Sections 4.2 and 4.3 detail the two 
major components of Co-Scheduling. 

4.1 Overview of Co-Scheduling 

Figure 6 outlines our approach. We begin by cal- 
culating MI1 from Equation 2. As the example in 
Section 2.2 showed, the MI1 from Equation 2 is some- 
times too low. In the next Section, we detail how to 
handle this situation. Once an appropriate I1 is found, 
using the framework just outlined in Section 3, we at- 
tempt to find (one of) the longest la tency  sequence(s), 
i.e. we try find at  what times operations can be in- 
troduced into the pipeline so as to keep it maximally 
utilized. 

Next , to perform software pipelining, we introduce 
SCS, a slackness based co-scheduling algorithm based 
on Huff's Slack Scheduling [5]. The key distinction 
between SCS and Huff's approach is that instead of 
placing operations at  any permissible time, S CS places 
them only at  times given by the la tency  sequence. If 
S C S  fails to find a schedule or fails to find one within 
a reasonable period of time, I1 is incremented, and 
the whole process is tried again. Once a schedule 
is found, the corresponding pipeline delays must be 
noted. That is, the prologue code to the loop must 
contain instructions telling the hardware pipelines to 
place delays (buffers) at  the necessary locations. 

4.2 Determining the Minimum I1 

We use the following notation throughout this sec- 
tion. Our aim is to construct a software pipelined 
schedule for a loop L to run on an architecture with h 
different types of FUs (e.g. Adder, Multiplier, etc.). 
The usage of resources (pipeline stages) in FU type T is 
specified by a single reservation table RT,, The exe- 
cution time of an instruction that executes on FU type 
T is same as the length of the reservation table I,. Fur- 
ther, each FU type T has F, pipelines. The loop L has 
N, instructions that are executed on the F, pipelines 
of FU type r .  

As mentioned in Section 2.1, the minimumI1, MII, 
is max(ResMI1,  RecMII) .  The ResMII bound is 
loose. Further for an initiation interval 11, the CRT 
has length I1 and must satisfy the modulo scheduling 

dG I AiM" 
Modified Pipeline 

Theory 

(Procedure 2) 

Sequence 

SCS: Slackness 
Based Co-Scheduling 

1 ProlDgue lnsrmctions to I Insert Delavs in Pioeline 

Figure 6: Outline of Slack Co-Scheduling Algorithm. 

constraint. This may introduce delays* in the CRT 
which, in turn, can increase the execution time of in- 
structions. As a consequence RecMII may be af- 
fected. Starting from the MI1 value obtained from 
Equation 2 (in Section 2.1), we use the following iter- 
ative procedure to determine the smallest 11. 

Procedure 2 Find-Minimum11 (11) 

Step 1 I1 = max(MII,max,.[d,,,(r)]}, where 
L a Z ( r )  is the maximum number of X marks in 
any row of RT, . 

Step 2 Repeat Steps 2.1 to 2.6 until a valid I1 satis- 
fying resource, recurrence and modulo scheduling 
constraints is found 

Step 2.1 For each FU type r do 

Step 2.1.1 Construct CRT, from RT,. In- 
troduce delays to satisfy modulo sched- 
uling constraint if required. 

Step 2.1.2 If the introduction of delays has 
increased the execution time, then 1, is 
set appropriately. 

Step 2.2 RecMII is calculated with the new 

Step 2.3 If the new RecMII > 11, increment I1 

values of 1,. 

by 1 and go back to Step 2.1. 

4 T ~ o  alternatives to satisfy the modulo scheduling con- 
straints are to unroll the loop and to increase the I1 by 1. How- 
ever, in this paper, we follow the approach used in the classical 
pipeline theory, namely introducing delays in the pipeline. 
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Step 2.4 Else, derive the MS-state diagram for 
the CRTs, CRTl to CRTh. Let Maz ,  repre- 
sent the maximumnumber of initiations pos- 
sible in FU type r and L, be a corresponding 
latency sequence that achieves the maximum 
initiations. 

Step 2.5 If, for each FU type r ,  F, 2 go 

Step 2.6 Else, increment I1 by 1 and go back to 
to Step 3; 

Step 2.1. 

Step 3 End. 

It can be observed that when Procedure 2 termi- 
nates, the I1 value satisfies, dependency, resource and 
modulo scheduling constraints. Further, it can be es- 
tablished that the I1 obtained from Procedure 2 is 
the minimum I1 [4]. 

4.3 SCS Algorithm 

In our CO-scheduling framework, resource usage of 
different pipeline stages, and the initiation of opera- 
tions in pipeline are maintained using the CRT and 
a ModuZo Initiation Table (MIT). More precisely, the 
CRT is used to keep track of the resource (pipeline 
stage) usage and avoid resource conflicts. Notice that 
our CRT, constructed as discussed in the previous sec- 
tion, does satisfy the modulo scheduling constraint, 
even in the presence of structural hazards. The mod- 
ulo initiation table indicates only when operations are 
introduced in the pipeline. Compared to the MIT, 
the Modulo Reservation Table (MRT), used in other 
software pipelining methods [7, 5, 9, 111, represents 
both the initiation time of instructions and their re- 
source usage. Due to this dual role, MRT consists of 
a larger number of columns, one for each stage of the 
pipelines in the architecture. This increases the com- 
plexity of software pipelining. In contrast, the MIT 
only stores when operations are initiated in the pipe. 
Hence, it consists of fewer columns, equal to the num- 
ber of pipelines in the architecture. 

After computing an I1 and a corresponding optimal 
latency sequence - optimal in terms of the through- 
put of a hardware pipeline structure - as detailed in 
Procedure 2, SCS, our slackness based co-scheduling 
algorithm is used to find a schedule fitting I1 and the 
Zatency sequence. The basic notion of Huff’s original 
Slack Scheduling [5] was to schedule nodes in increas- 
ing order of their slackness: the difference between the 
earliest time at  which a node may be scheduled and 
the latest. Slack is a dynamic measure and is updated 
after each node is scheduled. These points remain in 
scs. 

The difference lies in how a time is chosen within 
the slack range. The original Slack Scheduling permit- 
ted nodes to be placed anywhere in their slack range. 
SCS, on the other hand, allows nodes to be placed 
only at  points given in the latency sequence, even if 
this means avoiding some times that would yield a le- 
gal partial schedule. In this way, SCS takes a more 
global view of when instructions should be scheduled 
and avoids getting trapped at  greedy local maxima, 
the way the original can.5 

To clarify matters, we illustrate SCS through an 
example. Assume: (a) I1 = 5, (b)  one type of func- 
tion unit, (c)  one copy of it, (a) latency Sequence from 
Procedure 2: 0, 3, (e) one operation already placed 
at  time 1 (mod 11), and (f) new operation must be 
placed at time 3 or 4 to obey data dependence con- 
straints. 

Since the first operation has already been placed at  
time 1, the new operation can be placed only at  times 
matching the latency sequence. Since time i+O=i has 
already been used, the only other legal value is 1+3=4. 
Thus time 4 is chosen, even though time 3 may also 
have produced a legal partial schedule. 

We chose to use Slack Co-Scheduling because of 
the good performance achieved by the original Slack 
Scheduling [5]. However, modified versions of other 
modulo scheduling techniques [7, 3, 12, 111 using a 
fixed I1 could have been used instead. The main 
novelty of our approach lies in Procedure 2. The 
fact that it can work with variants of many other ap- 
proaches indicates its versatility. 

Recall that SCS, at least the current implemen- 
tation, works with only one latency sequence. This 
may affect: (a) The existence of a resource-constrained 
schedule for a given 11. This is true, even if the choice 
is made only among latency sequences that result in 
maximum initiations. (b) The quality of the schedule 
in terms of the number of registers used by the sched- 
ule. It is possible, in principle, to extend our SCS 
algorithm to use multiple latency sequences. We plan 
to investigate this in future. 

5 Experimental Results 

To evaluate CO-scheduling we implemented it and 
tested it on 1008 loops taken from a variety of bench- 
marks: specfp92, specint92, livermore, linpack, 
and the NAS kernels.  All of these loops contain fewer 
than 64 operations, with a median of 7 and a mean 
of 12. For the experiments, we considered an architec- 
~- 
Eh fairness, we note that the original was applied only to 

function units with clean pipelines and function units (divide) 
with no pipelining. 
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ture with 2 Integer Units, one each of the remaining 
units: Load, Store, FP Add/Subtract, FP Mul- 
tiply and FP Divide. To exercise our co-scheduling 
method fully, we chose long reservation tables (repre- 
senting deeper pipelines) with arbitrary structural haz- 
ards. In particular the FP add and multiply units have 
a depth of 5 and 7 pipeline stages respectively, while 
the divide unit has a depth of 22 stages. The reser- 
vation tables are chosen in such a way that their exe- 
cution latency of operations match with those of some 
state-of-the-art microprocessor architecture. Further 
they re-emphasize the point that the Co-Scheduling 
framework is especially for deeper pipelines of future 
architectures. 

For pragmatic reasons, we restricted our implemen- 
tation to take a maximum of 3 minutes to construct 
the schedule for each loop. We also limited the size 
of the MS-state diagram generated to 2000 collision 
vectors. While the latter restriction had no effect on 
the constructed schedule, the former allowed only 95% 
(or 958) of the test loops to be scheduled under the 
given resource constraints. The schedule for the re- 
maining 5% of the loops could be obtained either with 
a longer compilation time or starting with a higher 
MII. Table 1 details how well the I1 compares to the 
lower bound MII. As can be seen, in 41% of loops, we 
achieve I1 = MIL Further, for 72% of the test loops, 
the I1 achieved was within 4 cycles from the lower 
bound, MII. This turns out to be within 1.25 * MII. 
Our CO-Scheduling method, and all software pipelining 
methods in general, tend to take longer to construct a 
schedule when the function units are deeply pipelined 
and involve arbitrary structural hazard. To the best 
of our knowledge, this is one of the first extensive ex- 
perimental results for architectures involving deeper 
pipelines with arbitrary hazards6. In the future, we 
plan to compare our co-scheduling method with other 
software pipelining methods [5, 111. 

Additional statistics characterizing the loops and 
resulting schedules are given in Table 2. The median 
time to schedule a loop was 0.25 seconds and the (geo- 
metric) mean was 0.50 seconds on a Sparc 20. The 
median I1 was 12 and the geometric mean I1 was 14.3. 
89.9% of the loops required no more than 32 registers. 
Thus in a large number of cases, the schedule produced 
by CO-scheduling does not require any further (regis- 
ter) spill code. 

From our experiments, we observed that the intro- 

3 
4 

Similar experiments were conducted for shallow pipelines 
involving fewer structural haeards. In those experiments the 
performance of the co-scheduling framework is even better, re- 
quiring a (arithmetic) mean execution time of only 1.25 seconds 
and obtaining schedules for all but 2% of test loops in less than 
1 minute. These results are reported in [4]. 

50 5.0 
113 11.3 
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I1 - MI1 # of Cases %-age ~i 
No Schedule 
in 3 minutes 

Table 1: Difference between I1 achieved and MII. 

Table 2: Comparison of I1 achieved to MII. 

duction of delays in Procedure 2) does not increase 
11. This is partly due to our assumption of no inter- 
stage dependences. However, the insertion of delays 
does improve I1 for a small number, 17, of the test 
loops. The percentage improvement in I1 of our sched- 
ules against a scheduling method which does not in- 
sert delays (to satisfy modulo scheduling constraint) 
is roughly 3%. Further, our experiments revealed that 
the bound (from Equation 2) is quite tight, which is 
a surprise. Similar results were observed for architec- 
tures involving either shallow or deep pipelines. Hence 
one may conclude that these observations are some- 
what independent of the structure of the pipelines. 
Further investigation of these effects may be required 
to derive strong conclusions. 

6 Related Work 

Resource-constrained software pipelining has been 
studied extensively by several researchers and a num- 
ber of modulo scheduling algoTithms [2, 3, 5, 7, 10, 11, 
121 have been proposed in the literature. A compre- 
hensive survey of these works is provided by Rau and 
Fisher in [9]. As mentioned in Section 4.3, the Co- 
Scheduling method discussed in this paper uses a vari- 
ation of Huff’s Slack Scheduling method [5]. 



The work presented in this paper is unique in the 
sense that it coordinates the scheduling of both hard- 
ware structures and software pipelined schedules in 
a single Co-Scheduling framework to achieve high in- 
struction level parallelism. To the best of our knowl- 
edge, there is no explicit use of the well-developed 
classical pipeline theory (or its adaptation) in software 
pipelining methods. In contrast our Co-Scheduling ap- 
proach does so. The CO-Scheduling framework com- 
plements other related work in resource-constrained 
software pipelining by considering a special class, viz. 
a d h m e t i c  pipelines. It is very effective for handling 
deep arithmetic pipelines. 

There is another major difference between our Co- 
Scheduling and other approaches. In Co-Scheduling, 
the software pipeline initiations are represented in a 
Modulo Initiation Table while resource conflicts of 
hardware pipeline structures are handled in the Cyclic 
Reservation Table. In contrast other modulo schedul- 
ing algorithms use a single Modulo Reservation Table 
to  represent both resource conflicts and initiation time. 
Separating them, as in our method, facilitates achiev- 
ing better and faster schedules. An attractive feature 
of the CO-Scheduling framework is that it opens up 
new avenues by facilitating the use of classical delay 
insertion technique to improve instruction level paral- 
lelism. 

Modulo-Scheduled pipelines discussed in this paper 
are different from pipelines scheduled at  (fixed) latency 
cycles [8, 6, 11. The period of the latter depends only 
on the resource usage of the pipeline, while in the for- 
mer, it is governed both the resource usage and the 
recurrences in the loop considered for scheduling. 

7 Conclusions 

In this paper we have proposed Co-Scheduling, 
a unified framework that performs the scheduling 
of hardware and software pipelines. The proposed 
method uses and extends classical pipeline theory to 
obtain better software pipelined schedules, as has been 
demonstrated through both examples and experimen- 
tal results. As part of CO-Scheduling, we have intro- 
duced the Modulo Initiation Table (MIT) and Cyclic 
Reservation Table (CRT) as alternatives to the stan- 
dard modulo reservation table. 

We have implemented CO-scheduling and run exper- 
iments on a set of 1008 loops taken from various bench- 
mark suites. We have experimented our CO-Scheduling 
method specifically for architectures involving deeper 
pipelines and arbitrary structural hazards. The me- 
dian time for Go-Scheduling to handle one loop was 
0.25 seconds. 
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