Buckminsterfullerene, C_{60} : Improved synthesis, electron microscopy, electron states, anions and related aspects

T PRADEEP, F D'SOUZA, G N SUBBANNA, V KRISHNAN and C N R RAO*

Solid State and Structural Chemistry Unit, CSIR Centre of Excellence in Chemistry and Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India

MS received 19 August 1991

Abstract. Buckminsterfullerene, obtained in good yields at high rates by a suitably designed generator, has been characterized by electron microscopy and in terms of an approximate energy level diagram; C_{60} undergoes four reversible one-electron reductions giving rise to anionic species and interacts with tetrathiafulvalene to form a charge-transfer complex in the ground state.

Keywords. Buckminsterfullerene, C_{60} ; approximate energy level diagram; revesible one-electron reductions; closed-cage molecules.

1. Introduction

The closed-cage molecules of carbon, the fullerenes, and in particular buckminster-fullerene, C_{60} , first discovered by Kroto et al (1985) have become a topic of intense research after the synthetic procedure to prepare macroscopic quantities became available (Kratschmer et al 1990). In our efforts to investigate the structure, properties and reactivity of C_{60} , we have designed a generator which produces C_{60} in high yields at a fast rate. In this communication, we describe the synthesis and characterization of C_{60} , by means of electron microscopy, electron states, cyclic voltammetry and other techniques. We have given a satisfactory energy level scheme consistent with the electronic absorption spectrum and the UV photoelectron spectrum. We report four one-electron reversible reduction potentials of C_{60} giving rise to the different anions, besides reliable electronic absorption spectra of the mono and di-anions. We have also examined the interaction of C_{60} with various electron donor and acceptor molecules.

We have prepared C_{60} by contact-arc vapourization of graphite in a helium atmosphere. The C_{60} generator fabricated by us has a water-cooled copper vessel fitted with two water-cooled copper electrode holders housed in a stainless vacuum steel vessel mounted on a diffusion pump through a cold trap (liquid N_2). The graphite electrodes are held at loose contact, with their tips sharpened to a conical shape. One of the electrodes can be readily moved horizontally from outside in order to facilitate

^{*} For correspondence

the maintenance of the arc over extended periods. By employing a current of 150 amps or less, we have obtained C_{60} from the soot after separation and purification, the purity having been checked from mass spectrometry and $^{13}\text{C NMR}$ spectroscopy (Haufler et al 1990; Taylor et al 1990; Cox et al 1991). The yield of C_{60} with respect to the soot was 30%. Furthermore, by manipulating one of the electrodes from outside we could obtain C_{60} at high rates (50 mg in \sim 30 min). We believe that this innovation is worthy of notice.

Scanning electron micrographs of the C_{60} particles obtained after removal of the solvent show spherical aggregates of 1–5 microns (figure 1a). High-resolution electron micrographs not only show lattice fringes corresponding to c/2 (~ 8 Å) as in figure 1b, but also the closed-packed arrangement of C_{60} molecules with a diameter of ~ 7 Å. In the inset of figure 1b we show an image where the nearly circular white

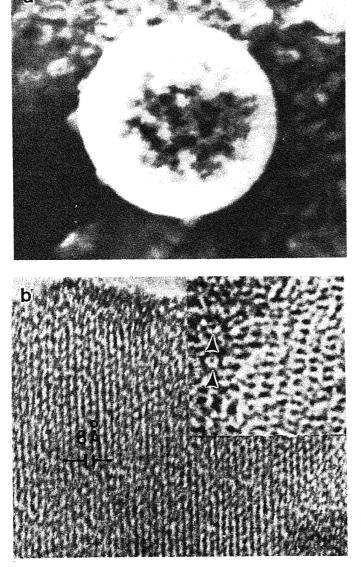


Figure 1. (a) Scanning electron micrograph showing spherical aggregates of C_{60} . (b) Lattice fringes in the transmission electron micrograph; inset shows close-packed C_{60} molecules.

M.

features with central black spots represent the projection of the hollow cage of the C_{60} molecule.

The electronic absorption spectrum of C_{60} in *n*-hexane solution recorded by us shows distinct maxima at 213, 257 and 328 mm (log ε , 5·1, 5·2 and 4·7 respectively) and a broad band centred around 555 nm; there is also a sharp feature at 404 nm in agreement with Hare et al (1991b). We are able to understand the spectrum by taking the first three π orbital energies to be approximately equal to the ionization energies from the UV photoelectron spectrum (Lichtenberger et al 1991). The ionization energies are at 7.6 (h_u) , 8.9 $(g_q + h_q)$ and $10.8 \,\mathrm{eV}$ $(g_u + t_{2u})$. In figure 2 we show the energy level diagram of C_{60} which also indicates the various $\pi - \pi^*$ transitions; in this diagram we have made use of the fact that the differences in some of the transition energies are close to the differences in the π orbital energies. The longest wavelength π - π * transition around 550 nm corresponds to HOMO-LUMO separation of 2·2 eV, in agreement with theoretical expectations (Fowler and Woolrich 1986; Bakowies and Thiel 1991) and the electron energy loss spectrum (Hansen et al 1991). The sharp 404 nm feature is likely to be due to the $\pi_2 - \pi_1^*$ (rather than the $\pi_1 - \pi_2^*$) transition as shown in figure 2. Some of the structure in the 550 nm band seems to correspond to the known vibrational frequencies of the molecule (Hare et al 1991a). The UV absorption bands of C₆₀ show solvent red-shifts in polar solvents (Rao et al 1976) indicating an increase in the dipole moment on excitation. The red-shifts of the 328 nm band in CH₃CN and DMSO solvent are 92 and 278 cm⁻¹ respectively with respect to n-hexane.

Cyclic voltammetry of C_{60} in CH_2Cl_2 solution carried out by Haufler *et al* (1990) with a glassy carbon electrode showed two reversible anionic forms. Dubois *et al* (1991) have more recently found four reductions in the -0.4 to -1.7 V range at a high scan rate of 20 V/s, of which only the first two at -0.44 and -0.82 V were reversible. We have carried out cyclic voltammetry as well as differential pulse

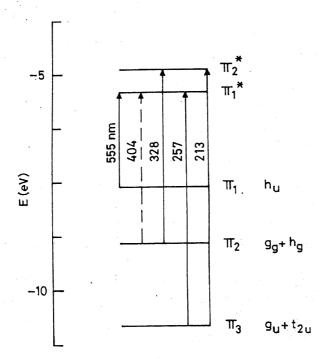
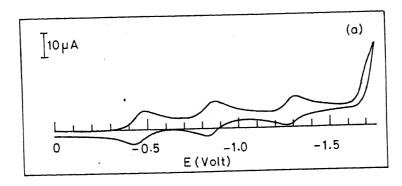



Figure 2. Approximate energy level scheme of C_{60} .

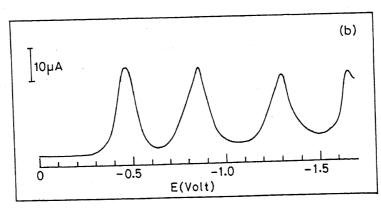


Figure 3. (a) Cyclic voltammogram of C_{60} in CH_2Cl_2 solution (~ 1 mM, Au electrode with 0.05 M NH_4PF_6 as supporting electrolyte, scan rate $300\,\text{mV/s}$). (b) Differential pulse voltammogram of C_{60} .

voltammetry in CH_2Cl_2 solution with Pt, glassy carbon and Au electrodes and found four one-electron reduction peaks in the range -0.4 to -1.9 V (figure 3). The reduction potentials are -0.464, -0.856, -1.292 and -1.661 V (vs Ag/AgCl), of which the first three were fully reversible while the fourth was quasi-reversible at a slow scan of 100-500 mV/s. The four successive reduction potentials were independent of the electrode and indicate the formation of C_{60}^- , C_{60}^{2-} , C_{60}^{3-} and C_{60}^{4-} . We could however not obtain oxidation of C_{60} up to ~ 2 V.

Thin-layer spectroelectrochemical measurements carried out with an optically transparent good mini-grid electrode have enabled us to obtain good electronic absorption spectra of C_{60}^- and C_{60}^{2-} . We show the spectra in figure 4. The UV absorption bands of C_{60}^- , besides showing red-shifts with respect to C_{60} , are less intense as expected (Rao *et al* 1970). We also see a characteristic band at 830 nm due to C_{60}^- which disappears in the dianion. Our measurements also show that the two anions could be reversibly oxidized back to C_{60} .

We have investigated the interaction of C_{60} with a variety of electron donor and acceptor molecules in hexane or CH_2Cl_2 solutions. We have found no evidence for the interaction of C_{60} with electron acceptors such as iodine, 1,3,5-trinitrobenzene and tetracyanoethylene; this is not unexpected on the basis of the high electron affinity (Yang et al 1987) of C_{60} . Surprisingly, C_{60} does not seem to interact with aromatic donors such as perylene or N,N-tetramethyl phenylenediamine. We however find evidence for the interaction of C_{60} with tetrathiafulvalene which is a strong electron donor molecule. We have observed a charge-transfer band around 247 nm due to the

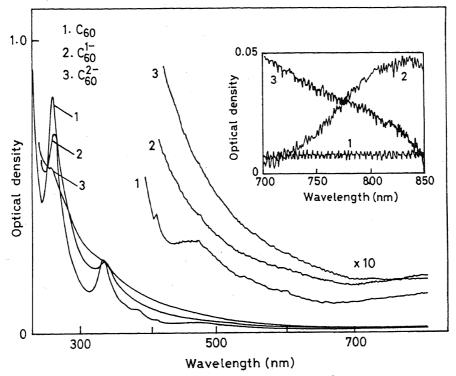


Figure 4. Electronic absorption spectra of C_{60} , C_{60}^- and C_{60}^{2-} obtained using a thin-layer spectroelectrochemical cell (electrolysis time 300s). Inset shows the spectrum in the 700-850 nm region.

 C_{60} + TTF complex. We have found no evidence for the formation of exciplexes with N,N-dimethylaniline or 1,4-dicyanobenzene.

References

Bakowies D and Thiel W 1991 J. Am. Chem. Soc. 113 3704

Cox D M, Behel S, Disko M, Gorun S M, Greaney M, Hsu C S, Kollin E B, Millnar J, Robbins J, Robbins W, Sherwood R D and Tindall P 1991 J. Am. Chem. Soc. 113 2940

Dubois D, Kadish K M, Flanagan S, Hausler R E, Chibante L P F and Wilson L J 1991 J. Am. Chem. Soc. 113 4364

Fowler P W and Woolrich J 1986 Chem. Phys. Lett. 127 78

Hansen P L, Fallon P J and Kratschmer 1991 Chem. Phys. Lett. 181 367

Hare J P, Dennis T J, Kroto H W, Taylor R, Allaf A W, Balms and Walton D R M 1991a J. Chem. Soc., Chem. Commun. 412

Hare J P, Kroto H W and Taylor R 1991b Chem. Phys. Lett. 177 394

Haufler R E, Conciecao J, Chibante L P F, Chai Y, Byrne N E, Flanagan S, Haley M M, O'Brien S C, Pan C, Xiao Z, Billups W E, Ciufolini M A, Hauge R H, Margrave J L, Wilson L J, Curl R F and Smalley R E 1990 J. Phys. Chem. 94 8634

Kratschmer W, Lamb L D, Fostiropoulous K and Huffman D R 1990 Nature (London) 347 354

Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature (London) 318 162

Lichtenberger D L, Nebesny K W, Ray C D, Huffman D R and Lamb L D 1991 Chem. Phys. Lett. 176 203

Rao C N R, Kalyanaraman V and George M V 1970 Appl. Spectrosc. Rev. 3 153

Rao C N R, Singh S and Senthilnathan V 1976 Chem. Soc. Rev. 5 297

Taylor R, Hare J P, Abdul-Sada A K and Kroto H W 1990 J. Chem. Soc., Chem. Commun. 1423

Yang S H, Pettiette C L, Conceicao J, Cheshnovsky O and Smalley R E 1987 Chem. Phys. Lett. 139 233