Application of Chaos Theory to Clutter Classification
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ABSTRACT

In this paper, the correlation dimension has been shown to
be effective in distinguishing between the melting layer and
the other regions in a weather phenomenon. Using the
correlation integral method of Grassberger and Procaccia,
data collected from an airborne radar has been analyzed. It
has been shown that the correlation dimension dips to 5.5 in
the melting layer where as it is around 7 in other regions.
Lyapunov exponent has been found to be positive in these
regions emphasizing the fact that the time series is indeed
chaotic. The chaos in the time series, it is surmised may
have had its origin in the fractal shape of the scatterers in
the melting region.

1. INTRODUCTION

Traditionally, time series backscatter data from weather
targets, commonly referred to as weather clutter, is
modeled as a stochastic process. The first three moments
are computed. The power scattered, mean Doppler and the
Doppler spectrum width are often used for identifying the
nature and dynamics of the scattering targets. Recent
introduction of polarimetric capability in radars has given
additional information about the shape of the targets. The
polarimetric Doppler radars, also referred to as
multiparameter radars, have come into use for
discrimination of hydrometeor types[1]. Stochastic models
are also used in characterization of land and sea surface
clutter wherein the experimental time series data is fitted
with well known distribution models such as Weibull,
lognormal and K-distributions.

The basis for most of the clutter characterization
approaches is that of minimizing the number of degrees of
freedom required to describe the process. In reality, the
clutter echoes have a highly irregular behavior. They
provide inadequate information about the sources

responsible for the generation of the process. Any clutter
classification scheme to be successful must utilize to the
full, the distinct nature of the sources of scattering.

Typical weather targets are rain drops, melting ice, hail,
needles of stellar crystals etc. and all of them posses
distinctly different orientations, fall modes and shape
distributions. While the rain drops are oblate spheroid in
shape and fall with their minor axis oriented vertically,
melting ice, hail stones, needles and crystals tumble while
they fall. Further, crystals and needles often possess shapes
that exhibit self similarity. Hence, it is only natural to expect
the time series data from raindrops, needles and crystals,
though appear random to naked eye and to many statistical
tests, to have different degrees of freedom. Similar
arguments can also be forwarded for the clutter originating
from sea, farm land, marshy land and mountainous
terrain[2], [22].

In this work, the existence of low dimensional chaotic
attractor in backscatter data from the melting layer of a
weather phenomenon is established. The possible utility of
correlation dimension of this chaotic attractor in
distinguishing between different types of weather scatterers
is discussed.

2. OUTLINE OF CHAOTIC ANALYSIS

Chaotic (Strange) attractor represents a very universal
behavior of dissipative nonlinear dynamical systems. A
chaotic attractor can be quantitatively characterized either
by its metric properties or by dynamical invariants
describing details of the temporal evolution of the
considered system[3], [4]. The metric structure of the
attractor can be characterized by the dimension of the
attractor and the most commonly used invariant in the latter
context is lyapunov exponent. The attractor of a dynamical
system can easily be obtained if the coupled differential
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equation for the relevant variables of the system are
known[5]. However, in many experimental situation,
neither the relevant variables are available nor even their
total number is known, rendering the attractor of the
system apriori inaccessible. Fortunately, the attractor can be
reconstructed in an artificial phase space, if the time series
of one single variable can be measured [3]-[10]. Taken’s
embedding theorem [6] ensures that the attractor is reliably
reconstructed in the limit of sufficiently large dimension D
of the artificial phase space. Based on this theorem,
different procedures are available in the literature to
determine dynamical as well as static invariants of attractors
from experimental time series of single variables like a)
nearest-neighbor method [11], [12], b) Correlation Integral
method [9], [10] and c¢) Singular-system method [13]. The
correlation integral method has been followed in this work
and is described below.

From the given one dimensional time series, a set of m
dimensional vectors can be obtained, whose components
are just the time delayed values of the variables. These are
the reconstructed phase space vectors be represented by

Xi = (xi’xi+T’xi+2T>""’xi+(m—1)T)’l = 1’2’3“‘

The integer m is called the embedding dimension and t the
delay. Further, if the dimension of the underlying dynamical
system is d, then the minimum dimension m, of a Euclidean

space R™in which we can find a smooth embedding of the
attractor is m, = 2d+1 [3]. Thus one can get the spatial
information in the m dimensional set from dynamical
information in the one dimensional data. A system which
has a d-dimensional attractor in its phase space will have a
its Taken’s vectors lying in a d-dimensional subset of the

embedding space R™ .

The correlation dimension of the phase space can be found
by wusing Grassberger and Procaccia algorithm [9].
Correlation integral is given by

C(e) = .ﬁlz—iﬁl o(c-|x. - x,|)

where © is the Heaviside function. The relationship
between the correlation dimension d and the correlation

integral is based upon the power law C(s) = & . The

correlation dimension can be found by plotting C(&)
versus & -on a log log graph. The region in which the
power law is obeyed appears as a straight line and the slope
computed is an estimate of correlation dimension. Since the
dynamical evolution of the system state on a strange
attractor is very sensitive to the choice of the initial
conditions, the dynamical flow in phase space must possess
at least one positive lyapunov exponent. Largest Lyapunov
exponent can be estimated using Wolf’s algorithm [14] and

the Lyapunov Spectrum can be found by Eckmann and
Ruelle algorithm [15].

3. RESULTS AND DISCUSSIONS

The data set chosen for analysis is collected from a Ku -
band radar flown in an aircraft at 12 KM altitude on 25®
May 1992. The data is collected at 512 range gates with a
30 m range resolution and at a PRF of 3.6 kHz. A total of
920 samples at each range gate have been collected for
analysis [16].

Assuming  the weather phenomenon belongs to the
category of dissipative conservative system dynamics, its
dynamics can be revealed through the strange attractor-
structure. Systems with dimensionality > 2 generally have
more complicated attracting sets with one or more positive
Lyapunov exponents and fractal dimensions.

The correlation dimension of the radar echoes at each
altitude have been found using the procedure described in
the previous section. The delay t for the phase space vector
has been chosen to be equal to PRT in the present work.

The correlation dimension analysis is not bereft of any
problems. Many inquiries have been made in the literature
on how much data is required to determine the correct
dimension. The arguments of Essex{17], Ruelle[18] and
Abarbanal[8] has been followed in this work. In order to
establish the correct dimension, analysis of the time series
data was carried out at different range gates. The time
series of the radar echo at a typical gate located at 4.53 KM
from the ground is shown in figure 1. Figure 2 gives the
logarithmic plot of correlation integral for different
embedding dimensions. It is clear from the figure that there

. is a region over which the plot is linear. The slopes of the

curves for each embedding dimension are computed in this
region and the result is plotted in figure 3, which gives an
estimate of the fractal dimension at that altitude.

Table 1 Positive Lyapunov exponents estimated at typical
Altitudes using 2 different methods.

Altitude( km) | Eckman & Ruelle | Wolf
4.38 1.0636, 1.0341 1.076
4.53 1.8688, 1.0169 1.928

The correlation dimension is calculated at every range gate
and the vertical profile is presented in figure 4. Also
depicted in figure 4 is the average echo power which when
adjusted for range gives the reflectivity factor Z [16]. From
the plot of P, it is easy to locate the melting region wherein
the largest spread of shapes, size and species concentration
are to be found. This will be just below the altitude at which
the average power peaks.
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FIG. 1. Time evolution of typical Radar echo at an aftitude of 4.53 Km
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FIG.3. Dimension analysis of a typical Radir echo at an altitude of 4.53 Km

Lyapunov exponent is also estimated using the available
methods. Table 1 shows the results for typical altitudes
4.38 km and 4.53 km. It indicates that that the phenomenon
is indeed chaotic.

Above the melting layer, most of the precipitation habitates
are frozen particles and do not contribute to intense
scattering because of the low dielectric constant of ice.
Below the melting layer, it is a pure rain medium, in this
case with oriented oblate spheroidal shapes of narrow size
and shape distribution. For a detailed analysis of the
meteorological phenomenon readers are referenced to {19].
It is to be noted that in a Gaussian random process, the
embedding dimension and the attractor dimension would be
equal and in the case of low dimensional chaotic attractor,
the  attractor  dimension would be lowered.
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FIG 4. Vertical Profilcs of Comrelation Dimension, Average Power.

The attractor dimension can be used thus for distinguishing
between the different regions of the weather phenomenon.
The correlation dimension fell from its large value of
around 7 above the freezing level to 5.5 at the melting layer
and then increased again to be above 7 in the rain region.
This indeed act as a parameter to distinguish between
oriented rain medium and a highly active melting region.
Further, the evidence of chaos in the time series also
establishes that the weather clutter can be viewed as a
manifestation of a deterministic dynamic phenomenon
involving a limited number of key variables. The attractor
dimension of around 7 also indicates that no more than 7
variables are needed to describe the process completely.

The chaotic nature of the scattered echoes from the region
of the melting layer may have been caused by the scatterer
shapes which are often fractal themselves [19]. However,
because of the low intensity of scattering above the melting
layer, even if particles with fractal shapes are present above
the melting layer, the effect of the shapes of the scatter is
unlikely to be seen to cause chaotic behavior in the time
series.
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The fact that Correlation dimension can be used to identify
the melting layer has applications in precise estimation of
the rain rate from satellite borne sensors where it is
important to know the height of the rain column. This work
also supports the finding of Haykin who has used the
correlation dimension and a neural network for
classification of ground and sea clutter [2], [20], [21], [22].
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