A DELAYLESS IFIR ADAPTIVE FILTER STRUCTURE WITH
ADAPTED FILTERBANK

K.Rajgopal

J.Dinesh Babu

Department of Electrical Engineering,
Indian Institute of Science,
Bangalore, India
kasi@ec iisc.crnet.in

Absrract—In many applications such as acoustic echo can-
celfation and wideband active noise control, the Least Mean
Square (LMS) based adaptive filters with hundreds of taps
are used, resulting in lower convergence and high compu-
tational coinplexity. In recent years researchers have devel-
oped adaptive filters based on subband techiques to improve
the convergence rate and reduce the computational com-
plexity, One such approach is IFIR structure based adap-
tive filters also calied Filter Bank Adaptive Filters(FBAF).
Though the technique improves the convergence rate, it in-
troduces 4 delay in the signal path. FBAFs usually use fixed
paraunitary Perfect Reconstruction (PR) filterbanks for pre-
processing the data. An arbitrary FIR transfer function can
be modelled by a delayless IFIR structure with no condi-
tions on the interpolating filter coefficients. The interpo-
lators can be designed using optimization techniques with
knowledge of input signal statistics to iraprove the conver-
gence rate. In this paper, we propose an algorithm 1o adapt
the imerpelators themselves and the model filiers simulta-
neousty to reduce the mean square error and hence require
no offline optimization procedure to design the interpola-
lors.

1. INTRODUCTION

Adaptive filtering techniques are used in many applications
[1} particularly, the adaptive FIR filters in view of their sta-
bility and unimodal performance properties. The conver-
gence rate of the fullband Least Mean Squares (LMS) algo-
rithin becomes poor as the number of taps increases and the
input becomes correlated.

To address this problem, subband structures have been pro-
posed for the adaptive filters |2}, [3). Convergence rate
is improved because the spectral dynamic range is signif-
icantly reduced in cach subband. Most of the subband
adaptive structures employ subsampling and a few do not
for ¢g: IFIR structure. A critically subsampled Subband
Adaptive Digital Filler {SADF) employing a filterbank with

Pertect Reconstruction {PR) property cannot model an arbi-

trary FIR transfer function exactly due to aliasing [4]. So-
Tution 10 this problem is oversampling of the filkerbanks or
introduction of adaptive crossterms between the subbands
which increases the computational complexity. These struc-
tures introduce another problem: a delay into the signal path
by the subfilters of the filterbank. For applications like ac-
tive noise control, delay serously limuts the bandwidth over

which good cancellation can be achieved. Several delayless
subband adaptive filter structures have been proposed |51,
[6] recently.

In a system identification application shown in Fig 1, an
[FIR structure as shown in Fig 2 is capable of modelling
any FIR system for appropriately chosen sparse filters. Usu-
ally the interpolators are chogen to be synthesis filters of a
paraunitary PRFB (M = D). Recently, Sridharan |[7] pro-
posed a delayless TFIR structure to model an arbitrary FIR
wransfer function relaxing the paraunitary PRFB consirainis
on the interpolating filter coefficients (A = D 4 1) The
interpolating filters were designed using optimization pro-
cedures to improve the convergence rate.  The opiumiza-
tion procedure asssumes 2 prion knowledge of input statis-
tics. Section 3 describes this model. A Normalised LMS
(NLMS) type algorithm was used to adapt the sparse filters
in a sysiem identification scenario as described  Section
4A.

In this paper, we propose a delayless FBAF structure based
on the model in [7] which does not require any ofiline op-
timization procedure to design the interpolatoss [8]. The
adaptation algorithm updates the coefficients of the inter-
polating filters and the modei filters simuttancously as de-
scribed in Section 4A and 483, In Section § we show the
computer simulation in order to verify the effectiveness ol
the proposed scheme.

2. IFIR STRUCTURE IN SYSTEM
IDENTIFICATION SETUP

In a system idemtification framework shown in Fig.1. let
S(z) be the FIR system trangfer function o be identified.
5(z) denote the TFTR model which approximates the sys-
tern S(z).
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Figure 1. Systems Identification setup

The M channel IFIR structure consisting of the interpolator
followed by the sparse filter is shown in Fig2.
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Figure 2. IFIR Structure
§(z) is given by
S(z) = S F(RIC(EP) (1)

where [ is the sparsity factor of the sparse filter,

In time domain, fet s(n) and ${n) denote the impulse re-
sponse of the system and the TFIR model respectively. &(n)
1s a lineer combination of a double indexed set of func-
tions {pm(n).0 <k <A -1,m=012,..} where
HMeanin) = fr(n —mD). fi(a) is the impulse response
of the #** interpolator. The index m indicales the time and
k corresponds to the channel index. When {5 .(n}} is
a linearly independent set then it is called filterbank basis
functions.

Therefore 84 {n), the impuise response of the A" channel,
is given by

v‘}k(n) = L"-',,,e:-k(m)f,,.(n - TJED) {(2)

The overall system is modelled by combining contributions
trom all the M channels as

) = X mCrem(n)
= MUY ep(m) filn ~ mD)
= SMic (0)] 1D o ap(n) 3)

The output of the system 10 an input u(n) is given by

Zpu(p)i(n — p)
EPu(p)Z;}iBiE,,;(:k(m)fk(n —mD —p)
= DML'Sne(m)ze(n — mD)

= S5 er(n)] 1D @ aaln) )

y(n)

where @ (n) = Xulp) fi(n — p)

The time-domain eguations of the IFIR model described
above can be written in matrix form as [ollows. Let the
fength of each model filter be L and the length of each in-
terpolatorbe Ly, Usually Ly > D.

the TFIR structure can model. Then L. = D(L,. - 1)+ Ly.
cx and §;, represent vectors ol dimension L. and L, respec-
tively given by

cdr e =D )
Equation 2 can be written in matrix notation as § = Fy¢;
Ju(0) 0 R
S 0 .0
where Fp = | 7 ¢ :

BDY R0y .0

The overall model § is a sum of contributions from all the
channels &

§ = 8p+S;+... +8ya1
= [FUF,...F,w_j][c;l,c,r...c:{;_,]"'
= Fec (6)
The dimension of vector ¢ is L,, where [, =
M. The IFIR structure can model a system

s=[s{0), s(1),...,8(Ls — 1)]7 of length L, if it satisfies
the following condition

Condition A: rank(F) > L,

Condition A can be translated into the following conditions
on L, and L as follows.

Condition B: L., Ly > L,

A special case of the TFIR structwre results when the inter-
polators are the synthesis filters of a paraunitary PRFB. In
this case M=D and {is.» (1)} is an orthogonal set of ba-
sis functions., There exists a unique solution ¢, (m) which
models an unknown systemn exactiy with a delay.

* The constant ¢.x () is the inner product of the system im-

pulse response and the basis functions given by

i\

Cap{rit) Eps(p) felp — mbM)

Spsp)hn (M ~p) (7}

The synthesis filter response is the time-reversed one of
analysis fllter response, Ay(n) = fr{—n). The features of
$(n) corresponding to the time index min the & frequency
bin is captured by the basis function . . {n) weighted by
the constant ¢. (m). If the length of analysis and synthesis
filters is Ly, then the reconstruction delay associated with
the PRFB is K = L; — 1 and the modelled system is de-
layed version of the actuat system.

S.(z) = "2 15(2) {8

Therefore this special case could be called Delaying IFIR
Structure.
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Cup = HRS
1 (0) 0 SO0
(MY Ry (M~ 1) hg(0

where Hy= | Pe(2M) Ay(200 - 1)

]
[CT(,CTI R T
FYEIHT.CH )T

= Hs [}

n

c. T

il

where H = [H(’;’HE‘ CHE T
Using equation 6 and 9 we get

8§, =FHs (10}

In the case of Delaying IFIR structure, L, is chosen to be
f['*—'*f,d], The dimension of ¥ and H is L.xL; and
LixL, respectively and L, > L, > L,. FH = [010]T,
where T 1s the identity matrix of size L.

Remark:

In general, the length of the interpolators can be arbitrary
and lurge. In the delayless TFIR structure, a smaller inter-
polator length (order 4, 8, or 16) is sufficient and computa-
tionally advantageous.

Therefore, the followmg condition helds good for the de-
layless 1FIR structure discussed in the next section.
ConditionC: L, > Ly > D

3. DELAYLESS IFIR STRUCTURE

In the defaying [FIR structure, FH = [010}T where I is
the identity matrix of size I, The mawrices H and F have
a spectal sparse structure so that they can be implemented
as an analysis and synthesis filter bank. [n a {FIR stroc-
ture, the decomposition is not performed explicitly and the
model filters derivation involves the decomposition oper-
ation. Hence the sparse structure of H can be sacrifised to
make it delayless. Ina delayless TFIR structure, matrix H is
such that FH = I where I is the identity mairix of size L ,.
This tmplies L, = Lg, condition tor delavless filter struc-
ture. The defayless condition along with condttions B, (7
implies that M > Dand Ly > (L, = L,}.

The computational compexity of the IFIR stracture 18 pro-
purtional to % Therefore the case M = D + 1 is chosen
and is referred 1o as delayless TFTR structure. Now H is no
longer sparse and is the right inverse of F.

Desigi choice for delaviess IFIR Siructure

For a giveu systern of length L, the sparsity factor D and
interpolator length £, can be chosen independently how-
ever the number of channels A7 and model fifter length [,
are chosen as follows.

Le=["FX ]+ land M = D + 1.

Le=] —L—’%L—L'l + 1, the model filters can actually be chosen
to have more taps to improve the steady state performance
ie the modelling capability of the delayless IFIR Structore.
In case we add L, taps more we can think of modelling a
systent 8 of length L, -+ L. whose first L, clements are
same as that of s and followed by DI, zeroes.

Delaviess IFIR Structure: Choice of interpolators

Paraunitary PRFB (M=D) synthesis filters are M in number
and satisfy [ shift orthogonality. In the case of delayless
IFIR structure A > [ and hence paraunitary PRFB syn-

‘thesis fillers catinot be used. For any arhitrary interpola-

tors chosen, the columns of F need not be orthogonal nor
linearly independerit, The choice of the interpolators deter-
mine the modelling capability of the TFIR structure and the
convergence rate of the adaptive algorithm. The flexibility
in chousing the interpolators is gaingd at the cost of losing
the structure in FE which allows it to be implemented as a
filterbank. '

In [7] (8cheme A) the interpolators were obtained by an
offline oplimization procedure minimising a cost function
based on ke condition number of an autocorrelation ma-
trix of order Af L, to improve the convergence rate. A pri-
ori knowledge of input statistics is assumed for (he opli-
mization. In this paper we propose (Scheme B) to adapt
the interpolators also along with the sparse filters using the
same cost finetion J=E[e*(n)] as there are no conditions
on them. Therefore no apriori input statistics is assumed.
The performance of this scheme i3 verified vsing simula-
tions in Section 6.

4. ADAPTATION ALGORITHM FOR THE

IFIR STRUCTURE _
We propose an online adaptation scheme for adapting
model and interpolator filters in this section. Considering
the ysual mean squared error cost function, J=E[e*(n]]
where e(r) = d(n) — y(n)

(4). SPARSE FILTERS

The derivative of .J with respectto ¢y 18

aJ L Ben)
= 2Kje(n)——=
Sor Eie(n) Fen ]
= 2E[e(n)xy(n)]. (1)
where xp(n)={zpin). xln — D). ax(n = D.]7, with

D.=(L.—-1)D

Using an NLMS type algorithm for adapling ¢y

x5 (n) 12)

cpin+ 1y = (‘:;\.('n) + ,l.m(n)m
A I F 3

where o is a small positive constant.
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The derivative ol J with respect to £, 18
8. , de(n)
5, [e(n) IR ]

5’9(7%)}

ofy

—2E[e(n) —5!]{;}(:) i

‘—QE[c(n)

i

LAl Un)Ey
= =2E[e{n)UT (n)c] (13}

—2Ele(n

where U{n) is defined as follows.
Let Df = Lf -1
Then Uin)=

uln) uln —1)
wln—D)  wfn—1-D)

u{n — Dy)
uin— Dy - D)

wfn =D} u(n—-1-10,)
Letgre{n) = UM (n)ey

u(n— Dy — D)

Using an NLMS type algorithun for adapting £,

gri(n)

a1 =1iln) +'36(n)0 +grl{n).gryin)
: Lin).gry

(14)

5. SIMULATION

The identification of an FIR system of length L, =128 is
considered. The input signal is a-colored noise sequence
generated by pussing gaussian white noise by a first-order
IR filter with a pole located at = = 0.9. Simulations were
carricd out with the fultband NLMS, Scheme A and Scheme
B. The step-sizes were chosen such that the best conver-
gence rate were obtained in each case. The following are the
design choices in Scheme B: M =3, D =2, Ly = 8and
L., = 66. Scheme I3 employs an adaptation atgorithm for
both the sparse filter and the interpolator. The initial coetti-
cients for the interpolators were chosen as cosine modulated
versions of a prototype filter designed using the matlab rou-
tne ﬁrl(L;.ﬁ)_ ¢ was chosen to be 0.5 and 7 to be 0.005.
Afer 100 modifications of the coefficients of the sparse fil-
ter ¢ (m) have been carried owt, the interpolators are started
1o adapt. The adaptive filter ¢ (i) continues the adaptation
algorithm. Fip.2 shows the learning curves. All the curves
are an ensemble average of 25 independent runs. The lecarn-
ing curves clearly indicate the superior performance of our
proposed structure.

6. CONCLUSIONS

We have proposed an online scheme for adapting the inter-
polators of a delayless IFIR structure. Therefore we do not

fuithand NLMS

MSE -»
|
3

] 1000 4000 5000

fleraons ->
Figare 3. Learning Curve: Fullband NLLMS versus the
proposed delayless scheme

require an offline optimization procedure to adapt the inter-
polators. The convergence rate is better than Scheme A due
to this adaptation as shown by the simulation results.
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